Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Org Biomol Chem ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742377

ABSTRACT

In this study, a really simple and efficient catalytic protocol for the construction of quinazolines from alcohol and diamine has been developed based on CuCoAl layered double hydroxide (CuCoAl-LDH). The developed CuCoAl-LDH catalyst could accelerate the cascade reactions without any additives and tolerate various alcohols with satisfactory yields. Cooperation between the Cu+ and Cu2+ species in CuCoAl-LDH was observed in the cascade reaction, and they are believed to be responsible for the oxidation of alcohol and dehydrogenation of the intermediate, respectively. The promoting effect of the substrate diamine was observed in the oxidation of alcohol, which simplifies the reaction system by eliminating the requirement for a base additive. The catalytic system exhibited highly practical potential for the synthesis of quinazolines, as demonstrated through recyclability investigations and scale-up experiments. A possible catalytic mechanism has been proposed based on a series of control experiments and EPR analysis.

2.
Phytomedicine ; 129: 155691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744232

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with few therapeutic options currently available. Traditional Chinese medicine has been used for thousands of years and exhibited remarkable advantages against such complicated disease for its "multi-component, multi-target and multi-pathway" characteristics. Compound Shouwu Jiangzhi Granule (CSJG) is a clinical empirical prescription for the treatment of NAFLD, but its pharmacological mechanism remains unknown. METHODS: The clinical efficacy of CSJG was retrospectively analyzed in NAFLD patients by comparing blood biomarkers levels and liver MR images before and after CSJG treatment. Then, high-fat/high-fructose (HFHF) diet-induced NAFLD mice were used to further confirm CSJG's effect against hepatic lipid accumulation through hepatic lipid determination and histopathological staining of liver samples. Next, the ingredients of CSJG were determined, and network pharmacology analysis was performed to predict potential targets of CSJG, followed by quantitative PCR (qPCR) and western blotting for verification. Then, lipidomics study was carried out to further explore the anti-NAFLD mechanism of CSJG from the perspective of triacylglyceride (TAG) synthesis but not free fatty acid (FFA) synthesis. The enzymes involved in this process were assayed by qPCR and western blotting. The potential interactions between the key enzymes of TAG synthesis and the active ingredients of CSJG were analyzed by molecular docking. RESULTS: CSJG attenuated blood lipid levels and hepatic fat accumulation in both NAFLD patients and mice. Although network pharmacology analysis revealed the FFA synthesis pathway, CSJG only slightly affected it. Through lipidomics analysis, GSJG was found to significantly block the synthesis of diglycerides (DAGs) and TAGs in the liver, with decreased DGAT2 and increased PLD1 protein expression, which diverted DAGs from the synthesis of TAGs to the production of PEs, PCs and PAs and thus lowed TAGs level. Molecular docking suggested that rhein, luteolin and liquiritigenin from CSJG might be involved in this regulation. CONCLUSION: Clinical and experimental evidence demonstrated that CSJG is a promising agent for the treatment of NAFLD. CSJG regulated TAGs synthesis to alleviate hepatic lipid accumulation. Rhein, luteolin and liquiritigenin from CSJG might play a role in it.


Subject(s)
Drugs, Chinese Herbal , Lipid Metabolism , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Triglycerides , Animals , Drugs, Chinese Herbal/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism , Triglycerides/blood , Humans , Male , Liver/drug effects , Liver/metabolism , Mice , Lipid Metabolism/drug effects , Retrospective Studies , Female , Diet, High-Fat , Disease Models, Animal , Middle Aged
3.
Sci China Life Sci ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38644444

ABSTRACT

To investigate the role of co-stimulatory and co-inhibitory molecules on immune tolerance in immune thrombocytopenia (ITP), this study mapped the immune cell heterogeneity in the bone marrow of ITP at the single-cell level using Cytometry by Time of Flight (CyTOF). Thirty-six patients with ITP and nine healthy volunteers were enrolled in the study. As soluble immunomodulatory molecules, more sCD25 and sGalectin-9 were detected in ITP patients. On the cell surface, co-stimulatory molecules like ICOS and HVEM were observed to be upregulated in mainly central memory and effector T cells. In contrast, co-inhibitory molecules such as CTLA-4 were significantly reduced in Th1 and Th17 cell subsets. Taking a platelet count of 30×109 L-1 as the cutoff value, ITP patients with high and low platelet counts showed different T cell immune profiles. Antigen-presenting cells such as monocytes and B cells may regulate the activation of T cells through CTLA-4/CD86 and HVEM/BTLA interactions, respectively, and participate in the pathogenesis of ITP. In conclusion, the proteomic and soluble molecular profiles brought insight into the interaction and modulation of immune cells in the bone marrow of ITP. They may offer novel targets to develop personalized immunotherapies.

4.
Immunity ; 57(3): 478-494.e6, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38447571

ABSTRACT

Emerging evidence has revealed a direct differentiation route from hematopoietic stem cells to megakaryocytes (direct route), in addition to the classical differentiation route through a series of restricted hematopoietic progenitors (stepwise route). This raises the question of the importance of two alternative routes for megakaryopoiesis. Here, we developed fate-mapping systems to distinguish the two routes, comparing their quantitative and functional outputs. We found that megakaryocytes were produced through the two routes with comparable kinetics and quantity under homeostasis. Single-cell RNA sequencing of the fate-mapped megakaryocytes revealed that the direct and stepwise routes contributed to the niche-supporting and immune megakaryocytes, respectively, but contributed to the platelet-producing megakaryocytes together. Megakaryocytes derived from the two routes displayed different activities and were differentially regulated by chemotherapy and inflammation. Our work links differentiation route to the heterogeneity of megakaryocytes. Alternative differentiation routes result in variable combinations of functionally distinct megakaryocyte subpopulations poised for different physiological demands.


Subject(s)
Megakaryocytes , Thrombopoiesis , Cell Differentiation/genetics , Hematopoietic Stem Cells , Blood Platelets
5.
J Med Chem ; 67(6): 4855-4869, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38489246

ABSTRACT

Atopic dermatitis is a chronic relapsing skin disease characterized by recurrent, pruritic, localized eczema, while PDE4 inhibitors have been reported to be effective as antiatopic dermatitis agents. 3',4-O-dimethylcedrusin (DCN) is a natural dihydrobenzofuran neolignan isolated from Magnolia biondii with moderate potency against PDE4 (IC50 = 3.26 ± 0.28 µM) and a binding mode similar to that of apremilast, an approved PDE4 inhibitor for the treatment of psoriasis. The structure-based optimization of DCN led to the identification of 7b-1 that showed high inhibitory potency on PDE4 (IC50 = 0.17 ± 0.02 µM), good anti-TNF-α activity (EC50 = 0.19 ± 0.10 µM), remarkable selectivity profile, and good skin permeability. The topical treatment of 7b-1 resulted in the significant benefits of pharmacological intervention in a DNCB-induced atopic dermatitis-like mice model, demonstrating its potential for the development of novel antiatopic dermatitis agents.


Subject(s)
Dermatitis, Atopic , Lignans , Phosphodiesterase 4 Inhibitors , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , Lignans/pharmacology , Lignans/therapeutic use , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor Inhibitors/therapeutic use , Cytokines/pharmacology , Skin
6.
Phytomedicine ; 128: 155424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537441

ABSTRACT

BACKGROUND: Leukopenia could be induced by chemotherapy, which leads to bone marrow suppression and even affects the therapeutic progression of cancer. Qijiao Shengbai Capsule (QSC) has been used for the treatment of leukopenia in clinic, but its bioactive components and mechanisms have not yet been elucidated clearly. PURPOSE: This study aimed to elucidate the molecular mechanisms of QSC in treating leukopenia. STUDY DESIGN: Serum pharmacochemistry, multi-omics, network pharmacology, and validation experiment were combined to study the effect of QSC in murine leukopenia model. METHODS: First, UPLC-QTOF-MS was used to clarify the absorbed components of QSC. Then, cyclophosphamide (CTX) was used to induce mice model with leukopenia, and the therapeutic efficacy of QSC was assessed by an integrative approach of multi-omics and network pharmacology strategy. Finally, molecular mechanisms and potential therapeutic targets were identified by validated experiments. RESULTS: 121 compounds absorbed in vivo were identified. QSC significantly increase the count of white blood cells (WBCs) in peripheral blood of leukopenia mice with 15 days treatment. Multi-omics and network pharmacology revealed that leukotriene pathway and MAPK signaling pathway played crucial roles during the treatment of leukopenia with QSC. Six targets (ALOX5, LTB4R, CYSLTR1, FOS, JUN, IL-1ß) and 13 prototype compounds were supposed to be the key targets and potential active components, respectively. The validation experiment further confirmed that QSC could effectively inhibit the inflammatory response induced by leukopenia. The inhibitors of ALOX5 activity can significantly increase the number of WBCs in leukopenia mice. Molecular docking of ALOX5 suggested that calycosin, daidzein, and medicarpin were the potentially active compounds of QSC. CONCLUSION: Leukotriene pathway was found for the first time to be a key role in the development of leukopenia, and ALOX5 was conformed as the potential target. QSC may inhibit the inflammatory response and interfere the leukotriene pathway, it is able to improve hematopoiesis and achieve therapeutic effects in the mice with leukopenia.


Subject(s)
Drugs, Chinese Herbal , Leukopenia , Leukotrienes , Animals , Leukopenia/drug therapy , Leukopenia/chemically induced , Drugs, Chinese Herbal/pharmacology , Mice , Leukotrienes/metabolism , Male , Cyclophosphamide , Disease Models, Animal , Network Pharmacology , Signal Transduction/drug effects , Capsules , Multiomics
7.
J Thromb Haemost ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38537781

ABSTRACT

BACKGROUND: Megakaryocytes (MKs) are polyploid cells responsible for producing ∼1011 platelets daily in humans. Unraveling the mechanisms regulating megakaryopoiesis holds the promise for the production of clinical-grade platelets from stem cells, overcoming significant current limitations in platelet transfusion medicine. Previous work identified that loss of the epigenetic regulator SET domain containing 2 (SETD2) was associated with an increased platelet count in mice. However, the role of SETD2 in megakaryopoiesis remains unknown. OBJECTIVES: Here, we examined how SETD2 regulated MK development and platelet production using complementary murine and human systems. METHODS: We manipulated the expression of SETD2 in multiple in vitro and ex vivo models to assess the ploidy of MKs and the function of platelets. RESULTS: The genetic ablation of Setd2 increased the number of high-ploidy bone marrow MKs. Peripheral platelet counts in Setd2 knockout mice were significantly increased ∼2-fold, and platelets exhibited normal size, morphology, and function. By knocking down and overexpressing SETD2 in ex vivo human cell systems, we demonstrated that SETD2 negatively regulated MK polyploidization by controlling methylation of α-tubulin, microtubule polymerization, and MK nuclear division. Small-molecule inactivation of SETD2 significantly increased the production of high-ploidy MKs and platelets from human-induced pluripotent stem cells and cord blood CD34+ cells. CONCLUSION: These findings identify a previously unrecognized role for SETD2 in regulating megakaryopoiesis and highlight the potential of targeting SETD2 to increase platelet production from human cells for transfusion practices.

8.
Cell Death Discov ; 10(1): 44, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267415

ABSTRACT

Premature ovarian insufficiency (POI) is a serious disease significantly affecting the physical and mental health of women of reproductive age, not just impacting fertility outcomes. Ovarian damage due to chemotherapy remains a major cause of this condition. Recent studies have indicated the involvement of the long non-coding RNA HOTAIR in the progression of various diseases, showcasing important biological functions, yet its role in POI remains unclear. We conducted microarray dataset analysis and qRT-PCR experiments, demonstrating downregulation of HOTAIR expression in ovarian tissue and granulosa cells. Various functional experiments using plasmids overexpressing HOTAIR confirmed its promotion of cisplatin-induced granulosa cell autophagy and proliferation. Mechanistically, dual-luciferase assays showed that HOTAIR modulates ATG14 levels in POI by binding miR-148b-3p, thereby enhancing levels of autophagy and proliferation. In this study, we first explored the impact of miR-148b-3p on POI and found that overexpression of miR-148b-3p reversed the promotion of autophagy and proliferation induced by HOTAIR overexpression. The inhibitory effect of miR-148b-3p inhibitor on KGN cell autophagy and proliferation improvement could also be reversed by silencing ATG14. Overall, our findings indicate the promoting role of HOTAIR in POI and its potential as a biomarker for POI by modulating the miR-148b-3p/ATG14 axis to improve mechanisms of autophagy and proliferation in POI.

9.
J Ovarian Res ; 17(1): 11, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195648

ABSTRACT

The etiology of polycystic ovary syndrome (PCOS) is complex and variable, and there is no exact cause or good treatment method. Most of the methods of hormones are used to temporarily meet the needs of patients. Experimental evidence has shown that trehalose has, anti-apoptotic, anti-oxidative, glucose-lowering, and insulin resistance effects. However, whether trehalose has a therapeutic effect on PCOS is unknown. It has been reported that the ovarian renin-angiotensin system (OVRAS) is involved in the development of PCOS, but it has not been fully elucidated. This study aims to explore the effect of trehalose on PCOS and elucidate the related OVRAS mechanism. We first observed that body weight, estrous cycle, ovarian follicles at all levels, glucose tolerance, serum hormones, and insulin resistance were improved by trehalose treatment in the PCOS mouse model. Moreover, trehalose treatment also ameliorated ovarian oxidative stress and apoptosis in PCOS mice, as determined by TUNNEL apoptosis staining, total SOD in ovarian homogenate, and WB assay. OVRAS mainly involves two classic pathways, namely the ACE/AngII/AT1R/AT2R, and ACE2 / Ang1-7/ MASR, Which play different functions. In PCOS mouse ovaries, we found that ACE/AngII/AT1R was up-regulated and ACE2/Ang1-7/MASR and AT2R were down-regulated by PCR and WB experiments, However, trehalose treatment changed its direction. In addition, we also found that trehalose ameliorated DHEA-induced oxidative stress and apoptosis in KGN by PCR and WB experiments, mainly by down-regulating ACE/AngII/AT1R. Our study shows that trehalose improves symptoms of PCOS mainly by down-regulating ACE/AngII/AT1R, revealing a potential therapeutic target for PCOS.


Subject(s)
Insulin Resistance , Polycystic Ovary Syndrome , Humans , Female , Animals , Mice , Polycystic Ovary Syndrome/drug therapy , Renin-Angiotensin System , Angiotensin-Converting Enzyme 2 , Trehalose/pharmacology , Apoptosis , Oxidative Stress , Glucose , Hormones
10.
Theranostics ; 14(2): 640-661, 2024.
Article in English | MEDLINE | ID: mdl-38169587

ABSTRACT

Regulated cell death (RCD) is considered a critical pathway in cancer therapy, contributing to eliminating cancer cells and influencing treatment outcomes. The application of RCD in cancer treatment is marked by its potential in targeted therapy and immunotherapy. As a type of RCD, PANoptosis has emerged as a unique form of programmed cell death (PCD) characterized by features of pyroptosis, apoptosis, and necroptosis but cannot be fully explained by any of these pathways alone. It is regulated by a multi-protein complex called the PANoptosome. As a relatively new concept first described in 2019, PANoptosis has been shown to play a role in many diseases, including cancer, infection, and inflammation. This study reviews the application of PCD in cancer, particularly the emergence and implication of PANoptosis in developing therapeutic strategies for cancer. Studies have shown that the characterization of PANoptosis patterns in cancer can predict survival and response to immunotherapy and chemotherapy, highlighting the potential for PANoptosis to be used as a therapeutic target in cancer treatment. It also plays a role in limiting the spread of cancer cells. PANoptosis allows for the elimination of cancer cells by multiple cell death pathways and has the potential to address various challenges in cancer treatment, including drug resistance and immune evasion. Moreover, active investigation of the mechanisms and potential therapeutic agents that can induce PANoptosis in cancer cells is likely to yield effective cancer treatments and improve patient outcomes. Research on PANoptosis is still ongoing, but it is a rapidly evolving field with the potential to lead to new treatments for various diseases, including cancer.


Subject(s)
Neoplasms , Regulated Cell Death , Humans , Immunotherapy , Neoplasms/drug therapy , Apoptosis , Cell Death
11.
J Ethnopharmacol ; 321: 117545, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38056533

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The dried aerial parts of Veronica linariifolia subsp. dilatata (Nakai & Kitag.) D.Y.Hong named Shui Man Jing (SMJ) is a traditional Chinese medicine with a long history of clinical use in the treatment of chronic bronchitis and coughing up blood, however, its role on acute lung injury (ALI) has not been revealed yet. AIM OF THE STUDY: To assess the efficiency of SMJ on ALI and to investigate whether it inhibited endothelial barrier dysfunction by regulating the EGFR/Akt/ZO-1 pathway to alleviate ALI in vivo and in vitro based on the result of network pharmacology. MATERIALS AND METHODS: An in vivo model of ALI was established using inhalation of atomized lipopolysaccharide (LPS), and the effects of SMJ on ALI were evaluated through histopathological examination and inflammatory cytokines, lung histology and edema, vascular and alveolar barrier disruption. Network pharmacology was applied to predict the mechanism of SMJ in the treatment of ALI. The crucial targets were validated by RT-PCR, Western Blotting, molecular docking, immunohistochemistry and immunofluorescence methods in vivo and in virto. RESULTS: Administration of SMJ protected mice against LPS-induced ALI, including ameliorating the histological alterations in the lung tissues, and decreasing lung edema, protein content of bronchoalveolar lavage fluid, infiltration of inflammatory cell and secretion of cytokines. SMJ exerted protective effects in ALI by inhibiting endothelial barrier dysfunction in mice and bEnd.3 cell. SMJ relieved endothelial barrier dysfunction induced by LPS through upregulating the EGFR expression. SMJ also increased the phosphorylation of Akt, and ZO-1 expression both in vivo and in vitro. CONCLUSION: SMJ attenuates vascular endothelial barrier dysfunction for LPS-induced ALI via EGFR/Akt/ZO-1 pathway, and is a promising novel therapeutic candidate for ALI.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Humans , Male , Mice , Animals , Lipopolysaccharides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Molecular Docking Simulation , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung , Endothelial Cells , Cytokines/metabolism , Edema/metabolism , ErbB Receptors/metabolism
12.
Biomater Adv ; 154: 213631, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37757645

ABSTRACT

This study investigated the properties of the micro/nano composite structure on the surface of high oxygen concentration titanium (HOC-Ti) after anodic oxidation modification (HOC-NT) and evaluated its biocompatibility as a dental implant material in vitro and in vivo. HOC-Ti was produced by titanium powders and rutile powders using the powder metallurgy method. Its surface was modified by anodic oxidation. After detecting the electrochemical characteristics, the surface properties of HOC-NT were investigated. MC3T3 and MLO-Y4 cells were employed to evaluate the biocompatibility of HOC-NT and cocultured to study the effects of the changes in osteocytes induced by HOC-NT on osteoblasts. While, its possible mechanism was investigated. In addition, osseointegration around the HOC-NT implant was investigated through in vivo experiments. The results showed that a unique micronano composite structure on the HOC-Ti surface with excellent hydrophilicity and suitable surface roughness was created after anodic oxidation promoted by its electrochemical characteristics. The YAP protein may play an important role in regulating bone remodeling by ß-catenin and Rankl/OPG Signaling Pathways. An in vivo study also revealed an accelerated formation rate of new bone and more stable osseointegration around the HOC-NT implant. In view of all experimental results, it could be concluded that the unique morphology of HOC-NT has enhanced physicochemical and biological properties. The promotion of bone formation around implants indicated the feasibility of HOC-NT for applications in oral implants.


Subject(s)
Nanocomposites , Osteogenesis , Titanium/pharmacology , Osseointegration/physiology , Oxygen/pharmacology
13.
Sci Bull (Beijing) ; 68(18): 2106-2114, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37599175

ABSTRACT

Rare but critical bleeding events in primary immune thrombocytopenia (ITP) present life-threatening complications in patients with ITP, which severely affect their prognosis, quality of life, and treatment decisions. Although several studies have investigated the risk factors related to critical bleeding in ITP, large sample size data, consistent definitions, large-scale multicenter findings, and prediction models for critical bleeding events in patients with ITP are unavailable. For the first time, in this study, we applied the newly proposed critical ITP bleeding criteria by the International Society on Thrombosis and Hemostasis for large sample size data and developed the first machine learning (ML)-based online application for predict critical ITP bleeding. In this research, we developed and externally tested an ML-based model for determining the risk of critical bleeding events in patients with ITP using large multicenter data across China. Retrospective data from 8 medical centers across the country were obtained for model development and prospectively tested in 39 medical centers across the country over a year. This system exhibited good predictive capabilities for training, validation, and test datasets. This convenient web-based tool based on a novel algorithm can rapidly identify the bleeding risk profile of patients with ITP and facilitate clinical decision-making and reduce the occurrence of adversities.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Purpura, Thrombocytopenic, Idiopathic/complications , Quality of Life , Retrospective Studies , Prospective Studies , Hemorrhage/diagnosis , Thrombocytopenia/complications
14.
J Health Popul Nutr ; 42(1): 82, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37592335

ABSTRACT

OBJECTIVE: The COVID-19 pandemic has been the most serious public health emergency encountered in modern assisted reproductive technology (ART) development. In order to identify lessons learned, this study reviews the effect of the pandemic on ART institutions and human sperm banks in China, and summarizes the experiences and reflections of Chinese scholars post-pandemic era. METHODS: This review is based on multiple consensus statements on the COVID-19 pandemic issued by Chinese experts as well as current national regulations and principles in ART institutions and human sperm banks to document the current situation of ART services in China, describe the impact of the pandemic on these services, and offer Chinese reflections on worrying issues in the post-pandemic era. RESULTS: China reached one million ART cycles in 2016, and there are currently 540 ART medical institutions and 27 human sperm banks, with 540 licensed for AIH, 91 for AID, 415 for conventional IVF and ICSI and 85 for PGT. Of these, only 4 institutions carry out 10,000 cycles or more annually, and the proportion of institutions with less than 1,000 cycles has reached 66%, which means that a considerable number of ART institutions are still not saturated. As a consequence of the COVID-19 pandemic, 63.6% of ART providers and 95.5% of human sperm banks suspended operations. By the end of May 2020, China, as an early country affected by the pandemic achieved a national resumption rate of ART medical services of 99.2% and that of human sperm banks of 100.0%. Reports from the first and largest human sperm bank in China showed that qualification, semen concentration and sperm viability rates measured at primary screening have significantly decreased post-pandemic. Much like in other countries, Chinese experts developed a consensus on prevention and control measures during the pandemic. In principle, all ART activities should be suspended during acute phases of infection spread. Chinese scholars highlight that attention should be paid to young patients with fertility requirements during and after COVID-19, and emphasize the importance of fertility evaluation and clinical intervention. In addition, couples should be reminded that during ART treatment, disinfectants should not be used excessively to minimize risks of damaging the reproductive system, gametes and zygotes. At the same time, timely and reasonable guidance for tackling negative emotions from stress response is needed to provide reassurance and to avoid irrational fear and excessive stress. Seminal parameters should be re-examined 2 months after SARS-CoV-2 vaccination, and ART treatments recommenced if no abnormalities are detected. CONCLUSIONS: Given the growing frequency of outbreaks of global infectious diseases in recent years, ART institutions and human sperm banks should pay attention to improving their prevention and control capabilities. To a certain extent, decisions and measures adopted in China during COVID-19 pandemic are worthy of recognition and acceptance. Chinese scholars have discussed, proactively responded to and understand the key issues surrounding ART development during the pandemic with the aim of contributing to the substantial progress and healthy development of ART services in the world.


Subject(s)
COVID-19 , Reproductive Techniques, Assisted , Sperm Banks , Humans , Male , COVID-19/epidemiology , COVID-19 Vaccines , East Asian People , Pandemics , SARS-CoV-2 , Semen , Sperm Banks/statistics & numerical data , Reproductive Techniques, Assisted/statistics & numerical data , China
15.
Genome Biol ; 24(1): 199, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653425

ABSTRACT

BACKGROUND: Cancer patients can achieve dramatic responses to chemotherapy yet retain resistant tumor cells, which ultimately results in relapse. Although xenograft model studies have identified several cellular and molecular features that are associated with chemoresistance in acute myeloid leukemia (AML), to what extent AML patients exhibit these properties remains largely unknown. RESULTS: We apply single-cell RNA sequencing to paired pre- and post-chemotherapy whole bone marrow samples obtained from 13 pediatric AML patients who had achieved disease remission, and distinguish AML clusters from normal cells based on their unique transcriptomic profiles. Approximately 50% of leukemic stem and progenitor populations actively express leukemia stem cell (LSC) and oxidative phosphorylation (OXPHOS) signatures, respectively. These clusters have a higher chance of tolerating therapy and exhibit an enhanced metabolic program in response to treatment. Interestingly, the transmembrane receptor CD69 is highly expressed in chemoresistant hematopoietic stem cell (HSC)-like populations (named the CD69+ HSC-like subpopulation). Furthermore, overexpression of CD69 results in suppression of the mTOR signaling pathway and promotion of cell quiescence and adhesion in vitro. Finally, the presence of CD69+ HSC-like cells is associated with unfavorable genetic mutations, the persistence of residual tumor cells in chemotherapy, and poor outcomes in independent pediatric and adult public AML cohorts. CONCLUSIONS: Our analysis reveals leukemia stem cell and OXPHOS as two major chemoresistant features in human AML patients. CD69 may serve as a potential biomarker in defining a subpopulation of chemoresistant leukemia stem cells. These findings have important implications for targeting residual chemo-surviving AML cells.


Subject(s)
Leukemia, Myeloid , Transcriptome , Adult , Humans , Child , Hematopoietic Stem Cells , Gene Expression Profiling , Signal Transduction
16.
Toxicol Lett ; 382: 33-40, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37245849

ABSTRACT

Benzene is a known hematotoxic and leukemogenic chemical. Exposure to benzene cause inhibition of hematopoietic cells. However, the mechanism of how the hematopoietic cells inhibited by benzene undergo malignant proliferation is unknown. The cells carrying leukemia-associated fusion genes are present in healthy individuals and predispose the carriers to the development of leukemia. To identify the effects of benzene on hematopoietic cells, preleukemic bone marrow (PBM) cells derived from transgenic mice carrying the Mll-Af9 fusion gene were treated with benzene metabolite hydroquinone in serial replating of colony-forming unit (CFU) assay. RNA sequencing was further employed to identify the potential key genes that contributed to benzene-initiated self-renewal and proliferation. We found that hydroquinone induced a significant increase in colony formation in PBM cells. Peroxisome proliferator-activated receptor gamma (Ppar-γ) pathway, which plays a critical role in carcinogenesis in multiple tumors, was significantly activated after hydroquinone treatment. Notably, the increased numbers of the CFUs and total PBM cells induced by hydroquinone were significantly reduced by a specific Ppar-γ inhibitor (GW9662). These findings indicated that hydroquinone can enhance self-renewal and proliferation of preleukemic cells by activating the Ppar-γ pathway. Our results provide insight into the missing link between premalignant status and development of benzene-induced leukemia, which can be intervened and prevented.


Subject(s)
Benzene , Hydroquinones , Leukemia , Animals , Mice , Benzene/toxicity , Cell Proliferation , Hydroquinones/toxicity , Leukemia/chemically induced , PPAR gamma/genetics
17.
Heliyon ; 9(4): e15531, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37128323

ABSTRACT

Objective: The aim of this retrospective study was to evaluate the prevalence of taurodontism in a group of adult dental patients in Northwest China with the aid of cone-beam computed tomography (CBCT). Methods: This study used Shifman and Chanannel's criteria to statistically analyze the prevalence of taurodontism in the premolars and molars of the Chinese population. CBCT images of 5488 teeth from 580 subjects of Chinese origin were evaluated. The measured data were statistically analyzed and the chi-square test was also used to compare the prevalence of taurodontism between male and female subjects and between the upper and lower jaws (P < 0.05). Results: Taurodontism was detected in 169 patients, with a prevalence of 29.14%, of which 27.24% were males and 30.65% were females. The chi-square test showed that there was no significant difference between males and females (P > 0.05). Taurodontism was found in 7.45% of all teeth examined. Taurodonts were significantly more common in the maxilla (9.06%) than in the mandible (5.15%) (P < 0.001), and the maxillary second molar (25.18%) was the most common tooth affected. According to morphology, hypotaurodonts were the most common (60.39%) among taurodontic teeth. Conclusions: Taurodontism was relatively common in the Chinese population and was almost equally distributed between males and females. The maxillary second molar was the most common tooth of all taurodonts measured, and taurodonts were significantly more common in the maxilla than in the mandible. Hypotaurodontism was the most common form of taurodontism. Our study provides a reference for dental deformities in the Chinese population and the diagnosis and treatment of taurodontism.

18.
J Chem Neuroanat ; 130: 102272, 2023 07.
Article in English | MEDLINE | ID: mdl-37044352

ABSTRACT

Stroke, the second common cause of death in the world, is commonly considered to the well-known phenomenon of diaschisis. After stroke, regions far from the lesion can show altered neural activity. However, the comprehensive treatment recovery mechanism of acute ischemic stroke remains unclear. This study aims to investigate the impact of comprehensive treatment on resting state brain functional connectivity to reveal the therapeutic mechanism through a three time points study design. Twenty-one acute ischemic stroke patients and twenty matched healthy controls (HC) were included. Resting state functional magnetic resonance imaging (fMRI) and clinical evaluations were assessed in three stages: baseline (less than 72 h after stroke onset), post-first month and post-third month. Amplitude of low-frequency fluctuations (ALFF) and Independent component analysis (ICA) were conducted. We found: 1) stroke patients had decreased ALFF in the right cuneus (one of the important parts of the visual network). After three months, ALFF increased to the normal level; 2) the decreased functional connectivity in the right cuneus within the visual network and restored three months after onset. However, the decreased functional connectivity in the right precuneus within the default mode network restored one month after onset; 3) a significant association was found between the clinical scale score change over time and improvement in the cuneus and precuneus functional connectivity. Our results demonstrate the importance of the cuneus and precuneus within the visual network and default mode network in stroke recovery. These findings suggest that the different restored patterns of neural functional networks may contribute to the neurological function recovery. It has potential applications from stroke onset through rehabilitation because different rehabilitation phase corresponds to specific strategies.


Subject(s)
Ischemic Stroke , Stroke , Humans , Brain Mapping , Brain , Recovery of Function
19.
RSC Adv ; 13(8): 4890-4897, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36762090

ABSTRACT

ZnO/TiO2 catalysts with different ZnO contents have been prepared through equal volume impregnation method, characterized by XRD, SEM, Py-IR, ICP, XPS, NH3-TPD and N2 adsorption/desorption, and evaluated in the synthesis of polycarbonate diol (PCDL) through transesterification. The results showed that titanium zinc oxide formed in these catalysts, and the content of acidic sites varied with the ZnO content, and ZnO/TiO2 (10%) has the highest acid amount. The ZnO/TiO2 (20%) with medium acidic sites showed the highest catalytic activity. The synthesis process of polycarbonate glycol was also optimized. Under the optimal reaction conditions, the yield of PCDL was 72.5%, and the M n reached 4829 g mol-1 with a PDI of 1.6.

20.
Pharm Biol ; 61(1): 459-472, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36794740

ABSTRACT

CONTEXT: Rheumatoid arthritis (RA) is an autoimmune disease with aberrant Th17 cell differentiation. Panax notoginseng (Burk.) F. H. Chen (Araliaceae) saponins (PNS) have an anti-inflammatory effect and can suppress Th17 cell differentiation. OBJECTIVE: To investigate mechanisms of PNS on Th17 cell differentiation in RA, and the role of pyruvate kinase M2 (PKM2). MATERIALS AND METHODS: Naive CD4+T cells were treated with IL-6, IL-23 and TGF-ß to induce Th17 cell differentiation. Apart from the Control group, other cells were treated with PNS (5, 10, 20 µg/mL). After the treatment, Th17 cell differentiation, PKM2 expression, and STAT3 phosphorylation were measured via flow cytometry, western blots, or immunofluorescence. PKM2-specific allosteric activator (Tepp-46, 50, 100, 150 µM) and inhibitor (SAICAR, 2, 4, 8 µM) were used to verify the mechanisms. A CIA mouse model was established and divided into control, model, and PNS (100 mg/kg) groups to assess an anti-arthritis effect, Th17 cell differentiation, and PKM2/STAT3 expression. RESULTS: PKM2 expression, dimerization, and nuclear accumulation were upregulated upon Th17 cell differentiation. PNS inhibited the Th17 cells, RORγt expression, IL-17A levels, PKM2 dimerization, and nuclear accumulation and Y705-STAT3 phosphorylation in Th17 cells. Using Tepp-46 (100 µM) and SAICAR (4 µM), we demonstrated that PNS (10 µg/mL) inhibited STAT3 phosphorylation and Th17 cell differentiation by suppressing nuclear PKM2 accumulation. In CIA mice, PNS attenuated CIA symptoms, reduced the number of splenic Th17 cells and nuclear PKM2/STAT3 signaling. DISCUSSION AND CONCLUSIONS: PNS inhibited Th17 cell differentiation through the inhibition of nuclear PKM2-mediated STAT3 phosphorylation. PNS may be useful for treating RA.


Subject(s)
Panax notoginseng , Saponins , Mice , Animals , Saponins/pharmacology , Th17 Cells , Phosphorylation , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...