Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 25(67): 15401-15410, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31670429

ABSTRACT

Polymorphism, the intrinsic character of one chemical compound with at least two distinct phase arrangements, plays a very key role in the photophysical properties. In this contribution, four 'T'-shaped molecules bearing the 2,1,3-benzothiadiazole (BTD) skeleton, named 5 a-5 d, were prepared and characterized. All compounds exhibited excellent thermal stability and polymorphism in the solid state, evident from thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy results. Intense emissions with high photoluminescent quantum yields were achieved both in solution (56-97 %) and neat films (33-98 %). All compounds possessed clearly pH-dependent luminescence properties in solution. Additionally, compound 5 d showed useful mechanochromic luminescence owing to the transformation between the crystal and amorphous state. Employing compounds 5 a-5 d as the dopant, solution-processable organic light-emitting diodes (OLEDs) were fabricated and presented a highest external quantum efficiency of 6.15 %, which is higher than the theoretical value of fluorescence-based OLEDs (∼5 %). This research provided a novel strategy for designing high-efficiency BTD-based polymorphic luminescent materials.

2.
ACS Appl Mater Interfaces ; 11(27): 24339-24348, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31187977

ABSTRACT

Difluoroboron (BF2)-containing dyes have attracted great interest owing to their exceptionally high luminescence efficiency and good electron-withdrawing properties. However, only a few reports on difluoroboron-based thermally activated delayed fluorescence (TADF) have been addressed. In this contribution, a novel BF2-containing TADF molecule of BFOXD, which contains two acceptor fragments of oxadiazole (OXD) and BF2 and one donor unit of 9,9-dimethylacridine, was synthesized and characterized. For comparison, the precursor of OHOXD bearing one acceptor unit was also investigated. Both molecules clearly show TADF characteristics with sky-blue emission in solution and film state. Additionally, OHOXD undergoes excited-state intramolecular proton transfer-coupled intramolecular charge transfer processes. Using 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole (CzSi) as the host, the organic light-emitting diodes fabricated via a solution process show maximum external quantum efficiency (EQE) of 2.98 and 13.8% for OHOXD- and BFOXD-based devices, respectively. While the bipolar TADF host of 10-(4-((4-(9H-carbazol-9-yl)phenyl)sulfonyl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (CzAcSF) is utilized instead of CzSi, the OHOXD- and BFOXD-based devices exhibit better performances with the maximum EQEs of 12.1 and 20.1%, respectively, which render the most efficient and the bluest emission ever reported for the BF2-based TADF molecules. This research demonstrates that introduction of one more acceptor unit into the TADF molecule could have a positive effect on emission efficiency, which opens a new way to design high-efficiency TADF molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...