Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Transl Pediatr ; 13(2): 271-287, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38455756

ABSTRACT

Background: Kawasaki disease (KD) often complicates coronary artery lesions (CALs). Despite the established significance of STAT3 signaling during the acute phase of KD and signal transducer and activator of transcription 3 (STAT3) signaling being closely related to CALs, it remains unknown whether and how STAT3 was regulated by ubiquitination during KD pathogenesis. Methods: Bioinformatics and immunoprecipitation assays were conducted, and an E3 ligase, murine double minute 2 (MDM2) was identified as the ubiquitin ligase of STAT3. The blood samples from KD patients before and after intravenous immunoglobulin (IVIG) treatment were utilized to analyze the expression level of MDM2. Human coronary artery endothelial cells (HCAECs) and a mouse model were used to study the mechanisms of MDM2-STAT3 signaling during KD pathogenesis. Results: The MDM2 expression level decreased while the STAT3 level and vascular endothelial growth factor A (VEGFA) level increased in KD patients with CALs and the KD mouse model. Mechanistically, MDM2 colocalized with STAT3 in HCAECs and the coronary vessels of the KD mouse model. Knocking down MDM2 caused an increased level of STAT3 protein in HCAECs, whereas MDM2 overexpression upregulated the ubiquitination level of STAT3 protein, hence leading to significantly decreased turnover of STAT3 and VEGFA. Conclusions: MDM2 functions as a negative regulator of STAT3 signaling by promoting its ubiquitination during KD pathogenesis, thus providing a potential intervention target for KD therapy.

2.
Biochem Biophys Res Commun ; 674: 170-182, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37423037

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a poor prognosis. The growth of GBM cells depends on the core transcriptional apparatus, thus rendering RNA polymerase (RNA pol) complex as a candidate therapeutic target. The RNA pol II subunit B (POLR2B) gene encodes the second largest subunit of the RNA pol II (RPB2); however, its genomic status and function in GBM remain unclear. Certain GBM data sets in cBioPortal were used for investigating the genomic status and expression of POLR2B in GBM. The function of RPB2 was analyzed following knockdown of POLR2B expression by shRNA in GBM cells. The cell counting kit-8 assay and PI staining were used for cell proliferation and cell cycle analysis. A xenograft mouse model was established to analyze the function of RPB2 in vivo. RNA sequencing was performed to analyze the RPB2-regulated genes. GO and GSEA analyses were applied to investigate the RPB2-regulated gene function and associated pathways. In the present study, the genomic alteration and overexpression of the POLR2B gene was described in glioblastoma. The data indicated that knockdown of POLR2B expression suppressed tumor cell growth of glioblastoma in vitro and in vivo. The analysis further demonstrated the identification of the RPB2-regulated gene sets and highlighted the DNA damage-inducible transcript 4 gene as the downstream target of the POLR2B gene. The present study provides evidence indicating that RPB2 functions as a growth regulator in glioblastoma and could be used as a potential therapeutic target for the treatment of this disease.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/pathology , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Cell Proliferation/genetics , Brain Neoplasms/pathology , RNA, Small Interfering/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
3.
Asian J Androl ; 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36891938

ABSTRACT

Approximately 31% of patients with 22q11.2 deletion syndrome (22q11.2DS) have genitourinary system disorders and 6% of them have undescended testes. Haploinsufficiency of genes on chromosome 22q11.2 might contribute to the risk of 22q11.2DS. In this study, we used mice with single-allele deletion in mitochondrial ribosomal protein L40 (Mrpl40 +/- ) as models to investigate the function of Mrpl40 in testes and spermatozoa development. The penetrance of cryptorchidism in Mrpl40 +/- mice was found to be higher than that in wild-type (WT) counterparts. Although the weight of testes was not significantly different between the WT and Mrpl40 +/- mice, the structure of seminiferous tubules and mitochondrial morphology was altered in the Mrpl40 +/- mice. Moreover, the concentration and motility of spermatozoa were significantly decreased in the Mrpl40 +/- mice. In addition, data-independent acquisition mass spectrometry indicated that the expression of genes associated with male infertility was altered in Mrpl40 +/- testes. Our study demonstrated the important role of Mrpl40 in testicular structure and spermatozoa motility and count. These findings suggest that Mrpl40 is potentially a novel therapeutic target for cryptorchidism and decreased motility and count of spermatozoa.

4.
Cell Biosci ; 12(1): 33, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303940

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is a common extracranial malignancy with high mortality in children. Recently, super-enhancers (SEs) have been reported to play a critical role in the tumorigenesis and development of NB via regulating a wide range of oncogenes Thus, the synthesis and identification of chemical inhibitors specifically targeting SEs are of great urgency for the clinical therapy of NB. This study aimed to characterize the activity of the SEs inhibitor GNE987, which targets BRD4, in NB. RESULTS: In this study, we found that nanomolar concentrations of GNE987 markedly diminished NB cell proliferation and survival via degrading BRD4. Meanwhile, GNE987 significantly induced NB cell apoptosis and cell cycle arrest. Consistent with in vitro results, GNE987 administration (0.25 mg/kg) markedly decreased the tumor size in the xenograft model, with less toxicity, and induced similar BRD4 protein degradation to that observed in vitro. Mechanically, GNE987 led to significant downregulation of hallmark genes associated with MYC and the global disruption of the SEs landscape in NB cells. Moreover, a novel candidate oncogenic transcript, FAM163A, was identified through analysis of the RNA-seq and ChIP-seq data. FAM163A is abnormally transcribed by SEs, playing an important role in NB occurrence and development. CONCLUSION: GNE987 destroyed the abnormal transcriptional regulation of oncogenes in NB by downregulating BRD4, which could be a potential therapeutic candidate for NB.

5.
Cell Death Dis ; 13(2): 174, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197448

ABSTRACT

Recent studies uncovered the emerging roles of SAPCD2 (suppressor anaphase-promoting complex domain containing 2) in several types of human cancer. However, the functions and underlying mechanisms of SAPCD2 in the progression of neuroblastoma (NB) remain elusive. Herein, through integrative analysis of public datasets and regulatory network of GSK-J4, a small-molecule drug with anti-NB activity, we identified SAPCD2 as an appealing target with a high connection to poor prognosis in NB. SAPCD2 promoted NB progression in vitro and in vivo. Mechanistically, SAPCD2 could directly bind to cytoplasmic E2F7 but not E2F1, alter the subcellular distribution of E2F7 and regulate E2F activity. Among the E2F family members, the roles of E2F7 in NB are poorly understood. We found that an increasing level of nuclear E2F7 was induced by SAPCD2 knockdown, thereby affecting the expression of genes involved in the cell cycle and chromosome instability. In addition, Selinexor (KTP-330), a clinically available inhibitor of exportin 1 (XPO1), could induce nuclear accumulation of E2F7 and suppress the growth of NB. Overall, our studies suggested a previously unrecognized role of SAPCD2 in the E2F signaling pathway and a potential therapeutic approach for NB, as well as clues for understanding the differences in subcellular distribution of E2F1 and E2F7 during their nucleocytoplasmic shuttling.


Subject(s)
E2F7 Transcription Factor , Neuroblastoma , Nuclear Proteins , Active Transport, Cell Nucleus , Cell Cycle , Cell Line, Tumor , Cell Nucleus/metabolism , E2F7 Transcription Factor/genetics , E2F7 Transcription Factor/metabolism , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
6.
World J Pediatr ; 17(3): 263-271, 2021 06.
Article in English | MEDLINE | ID: mdl-34160770

ABSTRACT

BACKGROUND: The aim of this study is to explore the characteristics of Kawasaki disease (KD) and concurrent pathogens due to a stay-at-home isolation policy during coronavirus disease 2019 (COVID-19) epidemic. METHODS: All patients with KD admitted between February and April in 2015-2020, were classified into before (group 1, in 2015-2019) and after (group 2, in 2020) isolation groups. A total of 4742 patients [with KD (n = 98) and non-KD (n = 4644)] referred to Mycoplasma pneumoniae (MP) and virus detection were analyzed in 2020. Clinical characteristics, laboratory data, and 13 pathogens were analyzed retrospectively. RESULTS: Group 2 had a significantly increased incidence of KD (0.11%) with 107 patients compared to that of group 1 (0.03%) with 493 patients. The comparisons of oral mucosal change, strawberry tongue, desquamation of the fingertips, cervical lymphadenopathy and neutrophil percentage decreased in group 2 compared to group 1. The infection rate of MP increased significantly in group 2 (34.7%) compared to group 1 (19.3%), while the positive rate of viruses decreased significantly in group 2 (5.3%) compared to group 1 (14.3%). In 2020, the positive rate of MP infection increased significantly in patients with KD compared to the increase in patients with non-KD. The infection rate of MP for younger children aged less than 3 years old was higher in group 2 than in group 1. CONCLUSION: Compared with the characteristics of KD from 2015 to 2019 years, the incidence of KD was increased in 2020 and was accompanied by a high incidence of MP infection, especially in younger children (less than 3 years old) during the isolation due to COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Mucocutaneous Lymph Node Syndrome/epidemiology , Physical Distancing , Pneumonia, Mycoplasma/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Adolescent , Child , Child, Preschool , Female , Humans , Incidence , Infant , Male , Pandemics , Retrospective Studies , SARS-CoV-2 , Virus Diseases/epidemiology , Virus Diseases/virology
8.
Front Pediatr ; 7: 288, 2019.
Article in English | MEDLINE | ID: mdl-31396494

ABSTRACT

Background: Kawasaki disease (KD) is a self-limiting illness with acute systematic vascular inflammation. It causes pathological changes in mostly medium and small-sized arteries, especially the arteria coronaria, which adds the risk of developing coronary heart disease in adults. Materials and methods: We detected the miR-223-3p expression in 30 KD patients combined with 12 normal controls using miRNA microarrays and RT-PCR. A KD mouse model was constructed using Candida albicans water insoluble substance (CAWS). We also checked the miR-223-3p's expression using qRT-PCR. The Luciferase reporting system was implemented to validate the correlation between miR-223-3p and Interleukin-6 receptor subunit beta (IL-6ST). TNF-α was used to stimulate human coronary artery endothelial cells (HCAECs), and miR-223-3p activator or inhibitor and KD serum were used to treat HCAECs. A Western blotting automatic quantitative analysis protein imprinting system was used to test the expression of signal transducer and the activator of transcription 3 (STAT3), phosphorylated-signal transducer and the activator of transcription 3 (pSTAT3) and NF-κB p65. Results: Clinical trials found that miR-223-3p expressions were markedly different (more than 2-fold) between the acute KD group and the control group. E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) levels were also significantly higher (about 2-fold) in KD especially with coronary artery lesions. MiR-223-3p could alleviate vascular endothelial damage in KD mice, and IL-6 (Interleukin-6), E-selectin and ICAM-1 were simultaneously negative. The values of IL-6, E-selectin, and ICAM-1 mRNA expressions decreased, while the value of IL-6ST was increased between the agonist treated mice and KD mice. The RT-qPCR consequences displayed that miR-223-3p explored the highest expression on the third day in both the KD mice as well as the agonist group. MiR-223-3p can directly combine with IL-6ST 3' untranslatable regions (UTR) and held back the IL-6's expression. Overexpression of miR-223 down regulated IL6ST expression and decreased the expression of p-STAT3 and NF-κB p65, while the miR-223 inhibitor could reverse the above process. Conclusion: MiR-223-3p is an important regulatory factor of vascular endothelial damage in KD and could possibly become a potential target of KD treatment in the future.

9.
Pediatr Res ; 85(6): 835-840, 2019 05.
Article in English | MEDLINE | ID: mdl-30723312

ABSTRACT

BACKGROUND: We investigated a costimulatory molecule OX40-OX40L acting as an upstream regulator to regulate the nuclear factor of activated T cell (NFAT) in the acute phase of Kawasaki disease (KD). METHODS: One hundred and one samples were collected and divided into six groups: coronary artery lesion (KD-CAL) before intravenous immunoglobulin (IVIG), KD-CAL after IVIG, KD without CAL (KD-nCAL) before IVIG, KD-nCAL after IVIG, fever of unknown (Fou), and Healthy. In vitro OX40-stimulating and OX40L-inhibiting tests were conducted in Healthy and KD groups, respectively. Both the messenger RNA (mRNA) and protein expression levels of OX40, OX40L, NFAT1, and NFAT2 were investigated using quantitative reverse transcription PCR and immunoblotting assay, respectively. RESULTS: The mRNA and protein expression levels of NFAT1, NFAT2, OX40, and OX40L were significantly increased in KD-CAL and KD-nCAL groups before IVIG compared with Fou and Healthy groups and decreased after IVIG. A positive correlation was found between them in KD. In vitro OX40-stimulating test demonstrated the significantly increased mRNA and protein expression levels of NFAT1 and NFAT2 in the peripheral blood mononuclear cells of the Healthy group. Meanwhile, OX40L-inhibiting test showed significantly decreased expression levels of NFAT1 and NFAT2 in the KD group. CONCLUSION: OX40-OX40L acts as an upstream regulator in the NFAT signaling pathway involved in KD.


Subject(s)
Mucocutaneous Lymph Node Syndrome/immunology , OX40 Ligand/blood , Receptors, OX40/blood , Case-Control Studies , Child, Preschool , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Infant , Leukocytes, Mononuclear/immunology , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/therapy , NFATC Transcription Factors/blood , NFATC Transcription Factors/genetics , OX40 Ligand/genetics , RNA, Messenger/blood , RNA, Messenger/genetics , Receptors, OX40/genetics , Signal Transduction
10.
Cancer Cell Int ; 17: 35, 2017.
Article in English | MEDLINE | ID: mdl-28286417

ABSTRACT

BACKGROUND: Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. METHODS: Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by ß-galactosidase staining and p16INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. RESULTS: Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. ß-Galactosidase staining analysis and p16INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. CONCLUSIONS: We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.

11.
Oncol Rep ; 37(3): 1419-1429, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28184925

ABSTRACT

Decreased autophagy is accompanied by the development of a myeloproliferative state or acute myeloid leukemia (AML). AML cells are often sensitive to autophagy­inducing stimuli, prompting the idea that targeting autophagy can be useful in AML cytotoxic therapy. AML NB4 cells overexpressing microtubule-associated protein 1 light chain 3-green fluorescent protein were screened with 69 inhibitors to analyze autophagy activity. AML cells were treated with the polo-like kinase 1 (PLK1) inhibitors RO3280 and BI2536 before autophagy analysis. Cleaved LC3 (LC3-II) and the phosphorylation of mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase, and Unc-51-like kinase 1 during autophagy was detected with western blotting. Autophagosomes were detected using transmission electron microscopy. Several inhibitors had promising autophagy inducer effects: BI2536, MLN0905, SK1-I, SBE13 HCL and RO3280. Moreover, these inhibitors all targeted PLK1. Autophagy activity was increased in the NB4 cells treated with RO3280 and BI2536. Inhibition of PLK1 expression in NB4, K562 and HL-60 leukemia cells with RNA interference increased LC3-II and autophagy activity. The phosphorylation of mTOR was reduced significantly in NB4 cells treated with RO3280 and BI2536, and was also reduced significantly when PLK1 expression was downregulated in the NB4, K562 and HL-60 cells. We demonstrate that PLK1 inhibition induces AML cell autophagy and that it results in mTOR dephosphorylation. These results may provide new insights into the molecular mechanism of PLK1 in regulating autophagy.


Subject(s)
Autophagy , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/metabolism , Leukemia, Myeloid, Acute/pathology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Biomarkers, Tumor/genetics , Blotting, Western , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Proliferation , Child , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Male , Mice , Neoplasm Staging , Phosphorylation , Prognosis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Survival Rate , TOR Serine-Threonine Kinases/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
12.
Dongwuxue Yanjiu ; 37(3): 136-43, 2016 May 18.
Article in English | MEDLINE | ID: mdl-27265651

ABSTRACT

The Wnt/ß-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primitive chordate, remains largely uncharacterized. To obtain basic data for functional analysis, we identified and isolated seven genes (Lrp5/6, Dvl, APC, CkIα, CkIδ, Gsk3ß, and Gro) of the Wnt/ß-catenin signaling pathway from the amphioxus (Branchiostoma floridae) genome. Phylogenetic analysis revealed that amphioxus had fewer members of each gene family than that found in vertebrates. Whole-mount in situ hybridization showed that the genes were maternally expressed and broadly distributed throughout the whole embryo at the cleavage and blastula stages. Among them, Dvl was expressed asymmetrically towards the animal pole, while the others were evenly distributed in all blastomeres. At the mid-gastrula stage, the genes were specifically expressed in the primitive endomesoderm, but displayed different patterns. When the embryo developed into the neurula stage, the gene expressions were mainly detected in either paraxial somites or the tail bud. With the development of the embryo, the expression levels further decreased gradually and remained only in some pharyngeal regions or the tail bud at the larva stage. Our results suggest that the Wnt/ß-catenin pathway might be involved in amphioxus somite formation and posterior growth, but not in endomesoderm specification.


Subject(s)
Gene Expression Profiling , Lancelets/cytology , Lancelets/genetics , Wnt Signaling Pathway/genetics , Animals , Lancelets/embryology
13.
Yi Chuan ; 33(7): 684-94, 2011 Jul.
Article in Chinese | MEDLINE | ID: mdl-22049680

ABSTRACT

A series of signal transduction pathways have been found to regulate the polarity establishment and formation of animal primary body axis. Among them, Wnt signaling pathway is extremely conserved and several key components in the pathway have been identified in the demosponge lineage. This implies that it is one of the earliest pathways involved in the ancestral metazoan axis development and might play an important role in specification and development of posterior and ventral fate of animal axis. Recently, with the establishment of functional experiments in vitro, the body plan formation has been found to be affected, in varying degrees, by many genes in the Wnt signaling pathway, such as members of wnt gene family, maternal gene beta-catenin and some transcription factor encoding genes. In this review, we analyzed the evolutionary origin of the wnt gene family involved in development of metazoan body plans, and then made a brief review on the roles of canonical Wnt/beta-catenin signaling in the polarity establishment and formation of primary body axis in diverse deuterostomes including sea urchin, amphioxus, zebrafish, frog, and mouse.


Subject(s)
Body Patterning , Eukaryota/growth & development , Eukaryota/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Eukaryota/classification , Eukaryota/genetics , Gene Expression Regulation, Developmental , Humans , Mice , Wnt Proteins/genetics , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...