Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(11): e2306485, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37941515

ABSTRACT

The transformation of the two-electron oxygen reduction reaction (2e-ORR) to produce hydrogen peroxide (H2 O2 ) is a promising green synthesis approach that can replace the high-energy consumption anthraquinone process. However, designing and fabricating low-cost, non-precious metal electrocatalysts for 2e-ORR remains a challenge. In this study, a method of combining complexation precipitation and thermal treatment to synthesize 2D copper-tin composite nanosheets to serve as the 2e-ORR electrocatalysts is utilized, achieving a high H2 O2 selectivity of 92.8% in 0.1 m KOH, and a bulk H2 O2 electrosynthesis yield of 1436 mmol·gcat -1 ·h-1 using a flow cell device. Remarkably, the H2 O2 selectivity of this catalyst decreases by only 0.5% after 10,000 cyclic voltammetry (CV) cycles. In addition, it demonstrates that the same catalyst can achieve 97% removal of the organic pollutant methyl blue in an aqueous system solution within 1 h using the on-site degradation technology. A reasonable control of defect concentration on the 2D copper-tin composite nanosheets that can effectively improve the electrocatalytic performance is found. Density functional theory calculations confirm that the surface of the 2D copper-tin composite nanosheets is conducive to the adsorption of the key intermediate OOH* , highlighting its excellent electrocatalytic performance for ORR with high H2 O2 selectivity.

2.
J Hazard Mater ; 410: 124544, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33246818

ABSTRACT

The development of multi-responsive chemosensors has a bright application prospect in environmental monitoring and biological diagnosis. In this paper, we report two kinds of fluorescent polyaniline-like derivatives containing of carbazole or fluorene moieties with two-dimensional (2D) nano-layered structure and their applications in the detection of Al3+, Fe3+, Cu2+ and HCl in different environments. Through the analysis of the structure and properties of these two 2D materials, we find that the prepared (Poly(9,9'-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(9H-carbazol-3-amine))) PDFCA material performs excellent sensing properties for above analytes. Relevant density functional theory (DFT) calculation further confirms the potential application of 2D nano-layered PDFCA material in sensing field. This study presents that 2D nano-layered PDFCA material is considerably competitive in the development of multi-responsive chemosensors, and it will greatly accelerate the research of 2D polymer materials.

3.
J Hazard Mater ; 389: 121902, 2020 05 05.
Article in English | MEDLINE | ID: mdl-31874755

ABSTRACT

Chemosensors play an important role in environmental protection, medical diagnosis and energy conservation. Although polyaniline and its derivatives and two-dimensional (2D) materials have been applied as chemosensors in many reports, the concept of two-dimensional (2D) polyaniline derivatives has not been achieved in chemosensors. Here, two kinds of two-dimensional (2D) polyaniline derivatives are designed and synthesized by template-free chemical polymerization. It can be found that these two two-dimensional (2D) chemosensors exhibit high selectivity and sensitivity to Cu2+ and N2H4. Moreover, it is noteworthy that one of the two-dimensional materials can achieve the limit of detection (LOD) of 45 nM and 8 nM for Cu2+ and N2H4, respectively. Especially, these results imply that this two-dimensional polyaniline derivative is promising as the chemosensor in sensing field.

4.
Talanta ; 204: 592-601, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31357339

ABSTRACT

Development of conjugated polymers with fluorescence sensing characteristics has received close attention from researchers in fields of environmental protection, biosensing and toxins detection on food. In this paper, novel polyaniline derivatives of poly(9-methyl-9H-carbazol-3-amine) and poly(9,9-dihexyl-9H-fluoren-2-amine) are prepared by facile chemical polymerization. Then they are characterized with NMR (Nuclear Magnetic Resonance), GPC (Gel Permeation Chromatography), XRD (X-Ray Diffraction), FT-IR (Fourier Transform Infrared spectroscopy), FL (Fluorescence spectrometry) and UV-vis (Ultraviolet-visible spectroscopy) characterizations and further applied to the fluorescence detection of different acids and amines. Moreover, the obtained poly(9-methyl-9H-carbazol-3-amine) displays excellent fluorescence properties in the detection for both acids and amines. Besides, this poly(9-methyl-9H-carbazol-3-amine) can not only be used for fluorescence detection in solution, but also can be prepared into solid state and applied in the gas phase fluorescence detection. This work has greatly expanded the scope of application to these polyaniline derivatives materials, opening a new path for the researches on multi-functional chemosensor.


Subject(s)
Aniline Compounds/chemistry , Carbazoles/chemistry , Fluorenes/chemistry , Fluorescent Dyes/chemistry , Aniline Compounds/chemical synthesis , Carbazoles/chemical synthesis , Ethylenediamines/analysis , Ethylenediamines/chemistry , Fluorenes/chemical synthesis , Fluorescence , Fluorescent Dyes/chemical synthesis , Hydrochloric Acid/analysis , Hydrochloric Acid/chemistry , Hydrogen Bonding , Limit of Detection , Methylamines/analysis , Methylamines/chemistry , Nitric Acid/analysis , Nitric Acid/chemistry , Reproducibility of Results , Spectrometry, Fluorescence/methods
5.
Article in English | MEDLINE | ID: mdl-30954800

ABSTRACT

A new nitrogen atom free polythiophene derivative bearing methoxy-ethoxy units of poly{3-[2-(2-methoxy-ethoxy)-ethoxy]-thiophene} (PM) was successfully synthesized by introducing multiple ether bonds on the thiophene unit. The special (ether bonds) coordination structure was constructed and these fluorescence characteristics of PM to metal ions detection were investigated. This polythiophene-based material displays a specific fluorescence quenching effect on Cu2+ and Ag+, and correspondingly emerges some color changes that are visible to the naked eyes. In addition, it even performs a low detection limit to Cu2+ for only 0.45 µM, which exhibits a higher selective detection to Cu2+ than other reported N-containing chemosenors. These discoveries are helpful to indicate an original aspect for development on nitrogen atom free polythiophene-based fluorescent-sensing materials.

6.
Chem Asian J ; 11(15): 2144-56, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27435470

ABSTRACT

This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X-ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction by hydrogen and by oxygen (H2 -TPR and O2 -TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of M(x+) into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent. In this regard, increases in the oxygen vacancies, reduction properties, and chemisorbed O2 (-) (and/or O(-) ) species of these Ce20 M1 Ox composite oxides (M refers to variable valence metals) play significant roles in this reaction. Among the samples, Ce20 Cr1 Ox exhibited the best catalytic performance, mainly because it has the best reducibility and more chemisorbed oxygen, and significant reasons for these attributes may be closely related to favorable synergistic interactions of the vacancies and near-surface Ce(3+) and Cr(3+) . Finally, a possible reaction mechanism was tentatively proposed to understand the reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...