Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 83(8): 1350-1367.e7, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37028419

ABSTRACT

The mammalian SWI/SNF (mSWI/SNF or BAF) family of chromatin remodeling complexes play critical roles in regulating DNA accessibility and gene expression. The three final-form subcomplexes-cBAF, PBAF, and ncBAF-are distinct in biochemical componentry, chromatin targeting, and roles in disease; however, the contributions of their constituent subunits to gene expression remain incompletely defined. Here, we performed Perturb-seq-based CRISPR-Cas9 knockout screens targeting mSWI/SNF subunits individually and in select combinations, followed by single-cell RNA-seq and SHARE-seq. We uncovered complex-, module-, and subunit-specific contributions to distinct regulatory networks and defined paralog subunit relationships and shifted subcomplex functions upon perturbations. Synergistic, intra-complex genetic interactions between subunits reveal functional redundancy and modularity. Importantly, single-cell subunit perturbation signatures mapped across bulk primary human tumor expression profiles both mirror and predict cBAF loss-of-function status in cancer. Our findings highlight the utility of Perturb-seq to dissect disease-relevant gene regulatory impacts of heterogeneous, multi-component master regulatory complexes.


Subject(s)
Chromatin Assembly and Disassembly , Neoplasms , Animals , Humans , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Mammals/metabolism
3.
Nat Struct Mol Biol ; 27(9): 836-845, 2020 09.
Article in English | MEDLINE | ID: mdl-32747783

ABSTRACT

Interactions between chromatin-associated proteins and the histone landscape play major roles in dictating genome topology and gene expression. Cancer-specific fusion oncoproteins, which display unique chromatin localization patterns, often lack classical DNA-binding domains, presenting challenges in identifying mechanisms governing their site-specific chromatin targeting and function. Here we identify a minimal region of the human SS18-SSX fusion oncoprotein (the hallmark driver of synovial sarcoma) that mediates a direct interaction between the mSWI/SNF complex and the nucleosome acidic patch. This binding results in altered mSWI/SNF composition and nucleosome engagement, driving cancer-specific mSWI/SNF complex targeting and gene expression. Furthermore, the C-terminal region of SSX confers preferential affinity to repressed, H2AK119Ub-marked nucleosomes, underlying the selective targeting to polycomb-marked genomic regions and synovial sarcoma-specific dependency on PRC1 function. Together, our results describe a functional interplay between a key nucleosome binding hub and a histone modification that underlies the disease-specific recruitment of a major chromatin remodeling complex.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Neoplasm Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Sarcoma, Synovial/metabolism , Transcription Factors/metabolism , Ubiquitins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/chemistry , HEK293 Cells , Humans , Models, Molecular , Neoplasm Proteins/chemistry , Nucleosomes/metabolism , Nucleosomes/pathology , Oncogene Proteins, Fusion/chemistry , Protein Conformation , Proto-Oncogene Proteins/chemistry , Repressor Proteins/chemistry , Sarcoma, Synovial/pathology , Transcription Factors/chemistry , Ubiquitination
4.
Blood ; 135(24): 2159-2170, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32315394

ABSTRACT

Much of what is known about the neurotrophic receptor tyrosine kinase (NTRK) genes in cancer was revealed through identification and characterization of activating Trk fusions across many tumor types. A resurgence of interest in these receptors has emerged owing to the realization that they are promising therapeutic targets. The remarkable efficacy of pan-Trk inhibitors larotrectinib and entrectinib in clinical trials led to their accelerated, tissue-agnostic US Food and Drug Administration (FDA) approval for adult and pediatric patients with Trk-driven solid tumors. Despite our enhanced understanding of Trk biology in solid tumors, the importance of Trk signaling in hematological malignancies is underexplored and warrants further investigation. Herein, we describe mutations in NTRK2 and NTRK3 identified via deep sequencing of 185 patients with hematological malignancies. Ten patients contained a point mutation in NTRK2 or NTRK3; among these, we identified 9 unique point mutations. Of these 9 mutations, 4 were oncogenic (NTRK2A203T, NTRK2R458G, NTRK3E176D, and NTRK3L449F), determined via cytokine-independent cellular assays. Our data demonstrate that these mutations have transformative potential to promote downstream survival signaling and leukemogenesis. Specifically, the 3 mutations located within extracellular (ie, NTRK2A203T and NTRK3E176D) and transmembrane (ie, NTRK3L449F) domains increased receptor dimerization and cell-surface abundance. The fourth mutation, NTRK2R458G, residing in the juxtamembrane domain, activates TrkB via noncanonical mechanisms that may involve altered interactions between the mutant receptor and lipids in the surrounding environment. Importantly, these 4 activating mutations can be clinically targeted using entrectinib. Our findings contribute to ongoing efforts to define the mutational landscape driving hematological malignancies and underscore the utility of FDA-approved Trk inhibitors for patients with aggressive Trk-driven leukemias.


Subject(s)
Hematologic Neoplasms/genetics , Membrane Glycoproteins/genetics , Point Mutation , Receptor, trkB/genetics , Receptor, trkC/genetics , Animals , Base Sequence , Benzamides/therapeutic use , Cell Line , Drug Resistance, Neoplasm/genetics , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/metabolism , Humans , Indazoles/therapeutic use , Lipid Metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Mice , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Oncogenes , Protein Kinase Inhibitors/therapeutic use , Protein Multimerization/genetics , RNA, Small Interfering/genetics , Receptor, trkB/chemistry , Receptor, trkB/metabolism , Receptor, trkC/chemistry , Receptor, trkC/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Proc Natl Acad Sci U S A ; 114(32): 8544-8549, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28739903

ABSTRACT

Glycoproteins traversing the eukaryotic secretory pathway begin life in the endoplasmic reticulum (ER), where their folding is surveyed by the 170-kDa UDP-glucose:glycoprotein glucosyltransferase (UGGT). The enzyme acts as the single glycoprotein folding quality control checkpoint: it selectively reglucosylates misfolded glycoproteins, promotes their association with ER lectins and associated chaperones, and prevents premature secretion from the ER. UGGT has long resisted structural determination and sequence-based domain boundary prediction. Questions remain on how this single enzyme can flag misfolded glycoproteins of different sizes and shapes for ER retention and how it can span variable distances between the site of misfold and a glucose-accepting N-linked glycan on the same glycoprotein. Here, crystal structures of a full-length eukaryotic UGGT reveal four thioredoxin-like (TRXL) domains arranged in a long arc that terminates in two ß-sandwiches tightly clasping the glucosyltransferase domain. The fold of the molecule is topologically complex, with the first ß-sandwich and the fourth TRXL domain being encoded by nonconsecutive stretches of sequence. In addition to the crystal structures, a 15-Å cryo-EM reconstruction reveals interdomain flexibility of the TRXL domains. Double cysteine point mutants that engineer extra interdomain disulfide bridges rigidify the UGGT structure and exhibit impaired activity. The intrinsic flexibility of the TRXL domains of UGGT may therefore endow the enzyme with the promiscuity needed to recognize and reglucosylate its many different substrates and/or enable reglucosylation of N-linked glycans situated at variable distances from the site of misfold.


Subject(s)
Glucosyltransferases/chemistry , Glucosyltransferases/physiology , Animals , Chaetomium/genetics , Chaetomium/metabolism , Crystallography, X-Ray/methods , Endoplasmic Reticulum/metabolism , Eukaryota/metabolism , Eukaryotic Cells/metabolism , Glucosyltransferases/metabolism , Glycoproteins/metabolism , Molecular Conformation , Protein Domains/physiology , Protein Folding , Protein Transport/physiology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...