Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomaterials ; 259: 120299, 2020 11.
Article in English | MEDLINE | ID: mdl-32827797

ABSTRACT

Due to the well-recognized biocompatibility, silk fibroin hydrogels have been developed for biomedical applications including bone regeneration, drug delivery and cancer therapy. For the treatment of cancer, silk-based photothermal agents exhibit the high photothermal conversion efficiency, but the limited light penetration depth of photothermal therapy restricts the treatment of some tumors in deep positions, such as liver tumor and glioma. To provide an alternative strategy, here we developed an injectable magnetic hydrogel based on silk fibroin and iron oxide nanocubes (IONCs). The as-prepared ferrimagnetic silk fibroin hydrogel could be easily injected through a syringe into tumor, especially rabbit hepatocellular carcinoma in deeper positions using ultrasound-guided interventional treatment. Compared with photothermal agents, the embedded IONCs endowed the ferrimagnetic silk fibroin hydrogel with remote hyperthermia performance under an alternating magnetic field, resulting in the effective magnetic hyperthermia of deep tumors including subcutaneously implanted tumor model in Balb/c mouse after the coverage of a fresh pork tissue and orthotopic transplantation liver tumor in rabbit. Furthermore, due to the confinement of IONCs in silk fibroin hydrogel, the undesired thermal damage toward normal tissue could be avoided compared with directly administrating monodispersed magnetic nanoparticles.


Subject(s)
Fibroins , Neoplasms , Animals , Hydrogels , Hyperthermia , Magnetic Phenomena , Mice , Rabbits , Silk
2.
Angew Chem Int Ed Engl ; 58(40): 14152-14156, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31355977

ABSTRACT

Bioinspired unidirectional porous materials have emerged as a unique class of scaffolds for the fabrication of macroscopic nanomaterial assemblies. However, these scaffolds usually serve simply as mechanical carriers to support various building blocks. Here, we report that the unidirectional silk fibroin scaffold can not only act as a carrier, but also serve as a controllable multiscale reactor to achieve the in situ synthesis of a Ag3 PO4 nanowire network anchored to ordered channels. Both the silk fibroin matrix and the interface play important roles in the nucleation and growth of the Ag3 PO4 nanowires. This unidirectional composite scaffold can be used for efficient water disinfection. Furthermore, the facile chemical transformation of Ag3 PO4 in the composite scaffold into Ag2 S provided an analogous unidirectional composite silk scaffold that displays both efficient solar water evaporation effect and antibacterial activity. It is expected that this method can be extended to fabricate a series of silk-based unidirectional composite scaffolds with varying functionalities.


Subject(s)
Fibroins/chemistry , Nanowires/chemistry , Silk/chemistry , Silver Compounds/chemistry , Animals , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL