Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Front Cardiovasc Med ; 11: 1383217, 2024.
Article in English | MEDLINE | ID: mdl-39026999

ABSTRACT

Background: Angiotensin II receptor blockers (ARBs) are utilized for the management of hypertension and diabetes. Previous meta-analyses suggested that azilsartan medoxomil (AZL-M) improved blood pressure (BP) reduction, but there were no safety findings or suggestions for patients with hypertension or diabetes. Methods: We performed an efficacy and safety meta-analysis of randomized controlled trials (RCTs) evaluating AZL-M therapy for reducing BP in patients with hypertension. Patients with hypertension complicated by diabetes were analyzed. The relevant literature was searched in English and Chinese databases for RCTs involving AZL-M in hypertension. Efficacy variables included the change from baseline in the 24-h mean systolic/diastolic BP measured by ambulatory BP monitoring, the change from baseline in clinic systolic/diastolic BP, and responder rates. Safety variables included total adverse events (AEs), serious AEs, AEs leading to discontinuation, and AEs related to the study drug. The raw data from the included studies were utilized to calculate the odds ratio (OR) for dichotomous data and the mean difference (MD) for continuous data, accompanied by 95% confidence intervals (CIs). Statistical analysis was performed using R software. Results: A total of 11 RCTs met the inclusion criteria, representing 7,608 patients, 5 of whom had diabetes. Pooled analysis suggested a reduction in BP among patients randomized to 40 mg of AZL-M vs. control therapy [24-h ambulatory blood pressure monitoring (ABPM) mean systolic blood pressure (SBP) (MD: -2.85 mmHg), clinic SBP (MD: -3.48 mmHg), and clinic diastolic blood pressure (DBP) (MD: -1.96 mmHg)] and for 80 mg of AZL-M vs. control therapy [24-h ABPM mean SBP (MD: -3.59 mmHg), 24-h ABPM mean DBP (MD: -2.62 mmHg), clinic SBP (MD: -4.42 mmHg), clinic DBP (MD: -3.09 mmHg), and responder rate (OR: 1.46)]. There was no difference in the reduction of risks, except for dizziness (OR: 1.56) in the 80-mg AZL-M group or urinary tract infection (OR: 1.82) in the 40-mg AZL-M group. Analysis of patients with diabetes revealed that AZL-M can provide superior management, while safety and tolerability were similar to those of control therapy. Conclusions: AZL-M appears to reduce BP to a greater extent than dose-control therapy and does not increase the risk of adverse events in patients with hypertension and diabetes compared with placebo. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=464284, identifier PROSPERO CRD42023464284.

2.
Cancer Immunol Immunother ; 73(8): 143, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832955

ABSTRACT

This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue. Correlation analysis demonstrated a positive association between USP47 expression levels and infiltrating CD8+ T cells, neutrophils, and macrophages, while showing a negative correlation with NKT cells. Furthermore, using Usp47 knockout mice, we observed a slower tumor growth rate and reduced tumor burden. The absence of USP47 led to increased infiltration of immune cells, including neutrophils, macrophages, NK cells, NKT cells, and T cells. Additionally, USP47 deficiency resulted in enhanced activation of cytotoxic T lymphocytes (CTLs) and altered T cell subsets within the tumor microenvironment. These findings suggest that USP47 plays a critical role in modulating the tumor microenvironment and promoting antitumor immune responses, highlighting its potential as a therapeutic target in prostate cancer.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Prostatic Neoplasms , Animals , Humans , Male , Mice , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred C57BL , Mice, Knockout , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tumor Microenvironment
3.
Food Chem ; 457: 140092, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38901347

ABSTRACT

The main bioavailable phenolics from of Gongju (GJ) and their mechanism for hepato-protection remain unclear. To select the GJ phenolics with high bioavailability, chrysanthemum digestion and Caco-2 cells were used and their hepato-protective potential were examined by using AML-12 cells. The digestive recovery and small intestinal transit rate of the main phenolic compounds ranged from 28.52 to 69.53% and 6.57% âˆ¼ 15.50%, respectively. Among them, chlorogenic acid, 3,5-dicaffeoylquinic acid, and 1,5-dicaffeoylquinic acid, showed higher small intestinal transit rates and digestive recoveries. Furthermore, we found that by increasing intracellular Catalase (CAT) and Superoxide dismutase (SOD) viability and lowering Malondialdehyde (MDA) level (P < 0.05), 3,5-dicaffeoylquinic acid significantly mitigated the oxidative damage of AML-12 liver cells more than the other two phenolics. Our results demonstrated that 3,5-dicaffeoylquninic acid was the primary phenolic compounds in GJ that effectively reduced liver damage, providing a theoretical basis for the development of GJ as a potentially useful resource for hepatoprotective diet.

4.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38569554

ABSTRACT

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , DEAD-box RNA Helicases , Exoribonucleases , Genomic Instability , Methyltransferases , R-Loop Structures , RNA Polymerase II , Transcription Termination, Genetic , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/metabolism , Adenosine/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , HEK293 Cells , Chromatin/metabolism , Chromatin/genetics , DNA Damage , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , RNA Methylation
5.
Hum Pathol ; 148: 32-40, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670237

ABSTRACT

This study investigated the clinicopathological, immunohistochemical, and molecular features of primary leptomeningeal melanocytic neoplasms (LMNs). Twelve LMN cases were retrospectively reviewed. We performed Fluorescence in-situ hybridization (including a 4-probe FISH assay with CDKN2A and MYC assay) and Next-Generation sequencing analyses on available cases. Histologically, 2 tumours were classified as melanocytomas (MC), 2 as intermediate-grade melanocytomas (IMC), and 8 as leptomeningeal melanomas (LMM). Two rare cases of LMM were associated with large plaque-like blue nevus. One MC case was associated with Ota. Ten cases (83.3%) showed melanocytic cells with benign features diffusely proliferating within the meninges. The Ki-67 in three categories differed (MC 0-1%, IMC 0-3%, LMM 3-10%). 57.1% of LMM cases (4/7) were positive for FISH. Nine of 10 tumours harboured activating hotspot mutations in GNAQ, GNA11, or PLCB4. Additional mutations of EIF1AX, SF3B1, or BAP1 were found in 40%, 30%, and 10% of tumours, respectively. During the follow-up (median = 43 months), 5 LMM patients experienced recurrence and/or metastasis, 3 of them died of the disease and the other 2 are alive with the tumour. Our study is by far the first cohort of LMN cases tested by FISH. In addition to morphological indicators including necrosis and mitotic figures, using a combination of Ki-67 and FISH helps to differentiate between IMC and LMM, especially in LMM cases with less pleomorphic features. SF3B1 mutation is first described in 2 cases of plaque-type blue nevus associated with LMM. Patients with SF3B1 mutation might be related to poor prognosis in LMN.


Subject(s)
Biomarkers, Tumor , Immunohistochemistry , In Situ Hybridization, Fluorescence , Melanoma , Meningeal Neoplasms , Mutation , Humans , Male , Female , Middle Aged , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Melanoma/genetics , Melanoma/pathology , Retrospective Studies , Aged , High-Throughput Nucleotide Sequencing , Young Adult , Adolescent , DNA Mutational Analysis
6.
J Neuropathol Exp Neurol ; 83(4): 258-267, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38408388

ABSTRACT

The World Health Organization has updated their classification system for the diagnosis of gliomas, combining histological features with molecular data including isocitrate dehydrogenase 1 and codeletion of chromosomal arms 1p and 19q. 1p/19q codeletion analysis is commonly performed by fluorescence in situ hybridization (FISH). In this study, we developed a 57-gene targeted next-generation sequencing (NGS) panel including 1p/19q codeletion detection mainly to assess diagnosis and potential treatment response in melanoma, gastrointestinal stromal tumor, and glioma patients. Loss of heterozygosity analysis was performed using the NGS method on 37 formalin-fixed paraffin-embedded glioma tissues that showed 1p and/or 19q loss determined by FISH. Conventional methods were applied for the validation of some glioma-related gene mutations. In 81.1% (30 of 37) and 94.6% (35 of 37) of cases, 1p and 19q were found to be in agreement whereas concordance for 1p/19q codeletion and no 1p/19q codeletion was found in 94.7% (18 of 19) and 94.4% (17 of 18) of cases, respectively. Overall, comparing NGS results with those of conventional methods showed high concordance. In conclusion, the NGS panel allows reliable analysis of 1p/19q codeletion and mutation at the same time.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , In Situ Hybridization, Fluorescence/methods , Glioma/genetics , Glioma/pathology , Chromosome Aberrations , Mutation/genetics , High-Throughput Nucleotide Sequencing , Isocitrate Dehydrogenase/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 19/genetics
7.
Chinese Journal of Pathology ; (12): 64-70, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012426

ABSTRACT

Objective: To investigate the clinicopathological features, immunophenotype, diagnosis and differential diagnosis of SRF-rearranged cellular perivascular myoid tumor. Methods: Two cases of SRF-rearranged cellular perivascular myoid tumor diagnosed in the Department of Pathology, Fudan University Shanghai Cancer Center from October 2021 to March 2022 were collected. Immunohistochemical staining, fluorescence in-situ hybridization (FISH) and next-generation sequencing (NGS) were performed, and the literature was reviewed. Results: Case 1, a 3-month-old boy presented with a painless tumor of the scalp, measuring about 2 cm in diameter. Case 2, a 3-year-old girl complained with a painless tumor of the knee, measuring approximately 1.5 cm in diameter. Microscopically, the tumor had a clear boundary and showed multinodular growth. The tumor was mainly composed of spindle cells arranged in long intersecting fascicles associated with thin, slit-like or branching ectatic vessels, focally forming hemangiopericytoma-like appearance. The tumor cells were abundant, but there was no obvious atypia. Mitotic figures (3-4/10 HPF) were noted. H-caldesmon and SMA were positive in both cases. Case 1 showed diffuse and strong positivity for Desmin, and focally for CKpan. Ki-67 proliferation index was 20% and 30%, respectively. FISH displayed NCOA2 gene translocation in case 1 and the RELA gene translocation in case 2. NGS detected the SRF-NCOA2 gene fusion in case 1 and the SRF-RELA gene fusion in case 2. Both patients underwent local excisions. During the follow-up of 5-14 months, case 1 had no local recurrence, while case 2 developed local recurrence 1 year post operatively. Conclusions: SRF-rearranged cellular perivascular myoid tumor is a novel variant of perivascular cell tumor, which tends to occur in children and adolescents. The tumor forms a broad morphologic spectrum ranging from a pericytic pattern to a myoid pattern, and include hybrid tumors with a mixture of pericytic and myoid patterns. Due to its diffuse hypercellularity and increased mitotic figures and smooth muscle-like immunophenotype, the tumor is easy to be misdiagnosed as myogenic sarcomas. The tumor usually pursues a benign clinical course and rare cases may locally recur.


Subject(s)
Child, Preschool , Female , Humans , Infant , Male , Biomarkers, Tumor/analysis , Calmodulin-Binding Proteins , China , Hemangiopericytoma/pathology , Sarcoma/pathology , Soft Tissue Neoplasms/pathology
8.
J Clin Nurs ; 32(17-18): 6089-6100, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37095612

ABSTRACT

AIMS AND OBJECTIVES: To assess the methodological quality of current clinical practice guidelines related to post-stroke dysphagia and develop an algorithm using nursing process as a framework for clinical nursing. BACKGROUND: Dysphagia is a serious complication of stroke. Yet the recommendations related to nursing in guidelines have not been systematically sorted out, so they are difficult for nurses to use to guide clinical nursing practice. DESIGN: Systematic review. METHODS: A systematic review of literature was performed using the PRISMA Checklist. A systematic search for relevant guidelines published between 2017 and 2022 was conducted. Appraisal of Guidelines for Research and Evaluation II instrument was used to assess methodological quality. Recommendations related to nursing practice from high-quality guidelines were summarised and developed into an algorithm to provide reference for the standardised construction of nursing practice scheme. RESULTS: 991 records were initially identified from database searches and other sources. Finally, 10 guidelines were included, of which 5 were rated as high quality. A total of 27 recommendations from the 5 highest-scoring guidelines were summarised and used to develop an algorithm. CONCLUSIONS: This study indicated deficiencies and variability in current available guidelines. Based on five high-quality guidelines, we developed an algorithm to facilitate nurses' adherence to guidelines and contribute to evidence-based nursing. In the future, high-quality guidelines, together with large-sample and multi-centre clinical researches are suggested to give more scientific and convincing evidence to nursing of post-stroke dysphagia. RELEVANCE TO CLINICAL PRACTICE: The findings indicate that nursing process may provide a unified framework for standardised nursing of different diseases. Nursing leaders are recommended to adopt this algorithm in their units. In addition, nursing administrators and educators should promote the application of nursing diagnosis to help nurses foster nursing thinking mode. PATIENT OR PUBLIC CONTRIBUTION: No patient or public involvement in this review.


Subject(s)
Deglutition Disorders , Humans , Deglutition Disorders/diagnosis , Deglutition Disorders/etiology , Evidence-Based Nursing , Algorithms , Administrative Personnel , Databases, Factual
9.
bioRxiv ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824758

ABSTRACT

Background: Type 2 diabetes (T2D) is associated with a strongly increased risk for restenosis after angioplasty driven by proliferation of vascular smooth muscle cells (VSMCs). Here, we sought to determine whether and how mitochondrial dysfunction in T2D drives VSMC proliferation with a focus on ROS and intracellular [Ca 2+ ] that both drive cell proliferation, occur in T2D and are regulated by mitochondrial activity. Methods: Using a diet-induced mouse model of T2D, the inhibition of the mitochondrial Ca 2+ /calmodulin-dependent kinase II (mtCaMKII), a regulator of Ca 2+ entry via the mitochondrial Ca 2+ uniporter selectively in VSMCs, we performed in vivo phenotyping after mechanical injury and established the mechanisms of excessive proliferation in cultured VSMCs. Results: In T2D, the inhibition of mtCaMKII reduced both neointima formation after mechanical injury and the proliferation of cultured VSMCs. VSMCs from T2D mice displayed accelerated proliferation, reduced mitochondrial Ca 2+ entry and membrane potential with elevated baseline [Ca 2+ ] cyto compared to cells from normoglycemic mice. Accelerated proliferation after PDGF treatment was driven by activation of Erk1/2 and its upstream regulators. Hyperactivation of Erk1/2 was Ca 2+ -dependent rather than mitochondrial ROS-driven Ca 2+ -dependent and included the activation of CaMKII in the cytosol. The inhibition of mtCaMKII exaggerated the Ca 2+ imbalance by lowering mitochondrial Ca 2+ entry and increasing baseline [Ca 2+ ] cyto , further enhancing baseline Erk1/2 activation. With inhibition of mtCaMKII, PDGF treatment had no additional effect on cell proliferation. Inhibition of activated CaMKII in the cytosol decreased excessive Erk1/2 activation and reduced VSMC proliferation. Conclusions: Collectively, our results provide evidence for the molecular mechanisms of enhanced VSMC proliferation after mechanical injury by mitochondrial Ca 2+ entry in T2D.

10.
Mol Metab ; 67: 101654, 2023 01.
Article in English | MEDLINE | ID: mdl-36513220

ABSTRACT

OBJECTIVE: The essential role of mitochondria in regulation of metabolic function and other physiological processes has garnered enormous interest in understanding the mechanisms controlling the function of this organelle. We assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins, in the control of mitochondria dynamic and function. METHODS: We used a multidisciplinary approach that include CRISPR/Cas9 technology-mediated generation of a stable Bbs1 gene knockout hypothalamic N39 neuronal cell line. We also analyzed the phenotype of BBSome deficient mice in presence or absence of the gene encoding A-kinase anchoring protein 1 (AKAP1). RESULTS: Our data show that the BBSome play an important role in the regulation of mitochondria dynamics and function. Disruption of the BBSome cause mitochondria hyperfusion in cell lines, fibroblasts derived from patients as well as in hypothalamic neurons and brown adipocytes of mice. The morphological changes in mitochondria translate into functional abnormalities as indicated by the reduced oxygen consumption rate and altered mitochondrial distribution and calcium handling. Mechanistically, we demonstrate that the BBSome modulates the activity of dynamin-like protein 1 (DRP1), a key regulator of mitochondrial fission, by regulating its phosphorylation and translocation to the mitochondria. Notably, rescuing the decrease in DRP1 activity through deletion of one copy of the gene encoding AKAP1 was effective to normalize the defects in mitochondrial morphology and activity induced by BBSome deficiency. Importantly, this was associated with improvement in several of the phenotypes caused by loss of the BBSome such as the neuroanatomical abnormalities, metabolic alterations and obesity highlighting the importance of mitochondria defects in the pathophysiology of BBS. CONCLUSIONS: These findings demonstrate a critical role of the BBSome in the modulation of mitochondria function and point to mitochondrial defects as a key disease mechanism in BBS.


Subject(s)
Bardet-Biedl Syndrome , Mice , Animals , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/metabolism , Obesity/metabolism , Proteins , Cell Line , Mitochondria/metabolism
11.
J Cancer Res Clin Oncol ; 149(7): 3423-3434, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35939113

ABSTRACT

PURPOSE: To better understand the clinicopathological characteristics and molecular alterations in different intratumoral components of colorectal cancer (CRC) with heterogeneity of mismatch repair (MMR) protein expression and microsatellite instability (MSI) status. METHODS: The histopathological features, MSI status, and other molecular alterations were analyzed in separately microdissected intratumoral regions and matched metastatic lymph nodes in four cases with intratumoral heterogenous MMR expression screened from 500 CRC patients, using PCR-based MSI testing, MLH1 promoter methylation, and targeted next-generation sequencing (NGS). RESULTS: High microsatellite instability (MSI-H) was identified in MLH1/PMS2-deficient regions in Cases 1 to 3 and in MSH2/MSH6-deficient regions in Case 4, while microsatellite stability (MSS) was detected in all the intratumoral regions and metastatic lymph nodes with proficient MMR expression (pMMR). Intratumoral heterogeneity of MLH1 promoter methylation and/or other common driving gene mutations of CRC, such as KRAS and PIK3CA mutations, was identified in all four CRCs. Further, three cases (75%) showed heterogeneous histomorphological features in intratumoral components and metastatic lymph nodes (Cases 1, 2, and 4), and the corresponding metastatic lymph nodes showed moderate differentiation with MSS/pMMR (Cases 2 and 3). CONCLUSIONS: Intratumoral heterogeneous MSI status is highly correlated with intratumoral histomorphological heterogeneity, which is also an important clue for the intratumoral heterogeneity of drive gene mutations in CRC. Thus, it is essential to detect MMR protein expression and other gene mutations in metastases before treatment, especially for CRCs with intratumoral heterogenous MMR protein expression or heterogenous histomorphological features.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Microsatellite Instability , DNA Mismatch Repair/genetics , MutS Homolog 2 Protein/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , MutL Protein Homolog 1/genetics , Molecular Biology
12.
International Eye Science ; (12): 222-227, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-960940

ABSTRACT

Corneal refractive surgery and intraocular collamer lens(ICL)implantation are the mainstream refractive surgery methods at present. Many studies have proved that ICL implantation can effectively improve the postoperative visual acuity of patients. ICL implantation has gained favor among refractive doctors and patients because of its multiple advantages. Excellent postoperative visual acuity and visual quality are the key factors to improve patients' satisfaction. In order to evaluate the subjective and objective visual quality of patients after operation and avoid complications, this article reviews the visual quality and postoperative complications after ICL implantation.

13.
Chinese Journal of Pathology ; (12): 19-24, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970119

ABSTRACT

Objective: To investigate the clinicopathological features, immunophenotypes and molecular genetics of EWSR1-SMAD3 positive fibroblastic tumor (ESFT) with an emphasis on differential diagnosis. Methods: The clinicopathological data, immunohistochemical profiles and molecular profiles of 3 ESFT cases diagnosed at the Department of Pathology, Fudan University Shanghai Cancer Center from 2018 to 2021were analyzed. The related literature was also reviewed. Results: There were two males and one female. The patients were 24, 12 and 36 years old, respectively. All three tumors occurred in the subcutis of the foot with the disease duration of 6 months to 2 years. The tumors were presented with a slowly growing mass or nodule, accompanied with pain in 1 patient. The tumors ranged in size from 0.1 to 1.6 cm (mean, 1.0 cm). Microscopically, the tumors were located in the subcutaneous tissue with a nodular or plexiform growth pattern. They were composed of cellular fascicles of bland spindle cells with elongated nuclei and fine chromatin. One of the tumors infiltrated into adjacent adipose tissue. There was no nuclear atypia or mitotic activities. All three tumors showed prominent stromal hyalinization with zonal pattern present in one case. Focal punctate calcification was noted in two cases. The immunohistochemical studies showed that tumor cells were diffusely positive for ERG and negative for CD31 and CD34, with Ki-67 index less than 2%. Fluorescence in situ hybridization on the two tested cases identified EWSR1 gene rearrangement. The next generation sequencing analysis demonstrated EWSR1-SMAD3 fusion in all three cases. During the follow up, one patient developed local recurrence 24 months after the surgery. Conclusions: ESFT is a benign fibroblastic neoplasm and has a predilection for the foot, characterized by ERG immunoreactivity and EWSR1-SMAD3 fusion. Local recurrence might occur when incompletely excised. Familiarity with its clinicopathological features is helpful in distinguishing it from other spindle cell neoplasms that tend to occur at acral sites.


Subject(s)
Adult , Child , Female , Humans , Male , Biomarkers, Tumor/analysis , China , In Situ Hybridization, Fluorescence , Neoplasms, Fibrous Tissue/pathology , RNA-Binding Protein EWS/genetics , Smad3 Protein/genetics , Soft Tissue Neoplasms/surgery
14.
Biology (Basel) ; 11(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421382

ABSTRACT

Serine-threonine kinase 10 (STK10) is a member of the STE20/p21-activated kinase (PAK) family and is predominantly expressed in immune organs. Our previous reports suggested that STK10 participates in the growth and metastasis of prostate cancer via in vitro and in vivo data. However, the correlation between STK10 and the tumor microenvironment (TME) remains unclear. In this study, we assessed the relationship between STK10 and the immune cells in the tumor microenvironment of prostate cancer through bioinformatic analysis, and investigated the role of Stk10 in tumor growth using an Stk10 knockout mouse model. The results showed that STK10 is significantly associated with the tumor-infiltrating immune cells including lymphocytes, neutrophils, macrophages and dendritic cells. The target deletion of host Stk10 results in increased tumor growth, due to decreased activated/effector cytotoxic T lymphocytes (CTLs) and increased vessel density in the TME. In conclusion, we demonstrate that host Stk10 is involved in the host anti-tumor response by modulating the activated tumor-infiltrated CTLs and angiogenesis.

15.
Int J Mol Sci ; 23(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806136

ABSTRACT

Activating transcription factor 5 (ATF5) belongs to the activating transcription factor/cyclic adenosine monophosphate (cAMP) response element-binding protein family of basic region leucine zipper transcription factors. ATF5 plays an important role in cell stress regulation and is involved in cell differentiation and survival, as well as centrosome maintenance and development. Accumulating evidence demonstrates that ATF5 plays an oncogenic role in cancer by regulating gene expressions involved in tumorigenesis and tumor survival. Recent studies have indicated that ATF5 may also modify the gene expressions involved in other diseases. This review explores in detail the regulation of ATF5 expression and signaling pathways and elucidates the role of ATF5 in cancer biology. Furthermore, an overview of putative therapeutic strategies that can be used for restoring aberrant ATF5 activity in different cancer types is provided.


Subject(s)
Activating Transcription Factors , Neoplasms , Activating Transcription Factors/genetics , Activating Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation , Humans , Neoplasms/genetics
16.
Front Genet ; 13: 880071, 2022.
Article in English | MEDLINE | ID: mdl-35646106

ABSTRACT

NBS-LRR genes are the largest gene family in plants conferring resistance to pathogens. At present, studies on the evolution of NBS-LRR genes in angiosperms mainly focused on monocots and eudicots, while studies on NBS-LRR genes in the basal angiosperms are limited. Euryale ferox represents an early-diverging angiosperm order, Nymphaeales, and confronts various pathogens during its lifetime, which can cause serious economic losses in terms of yield and quality. In this study, we performed a genome-wide identification and analysis of NBS-LRR genes in E. ferox. All 131 identified NBS-LRR genes could be divided into three subclasses according to different domain combinations, including 18 RNLs, 40 CNLs, and 73 TNLs. The E. ferox NBS-LRR genes are unevenly distributed on 29 chromosomes; 87 genes are clustered at 18 multigene loci, and 44 genes are singletons. Gene duplication analysis revealed that segmental duplications acted as a major mechanism for NBS-LRR gene expansions but not for RNL genes, because 18 RNL genes were scattered over 11 chromosomes without synteny loci, indicating that the expansion of RNL genes could have been caused by ectopic duplications. Ancestral gene reconciliation based on phylogenetic analysis revealed that there were at least 122 ancestral NBS-LRR lineages in the common ancestor of the three Nymphaeaceae species, suggesting that NBS-LRR genes expanded slightly during speciation in E. ferox. Transcriptome analysis showed that the majority of NBS-LRR genes were at a low level of expression without pathogen stimulation. Overall, this study characterized the profile of NBS-LRR genes in E. ferox and should serve as a valuable resource for disease resistance breeding in E. ferox.

17.
Hum Cell ; 35(4): 1071-1083, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35416622

ABSTRACT

Studies have indicated that RIG-I may act as a tumor suppressor and participate in the tumorigenesis of some malignant diseases. However, RIG-I induces distinct cellular responses via different downstream signaling pathways depending on the cell type. To investigate the biological function and underlying molecular mechanism of RIG-I in the tumorigenesis of melanoma, we constructed RIG-I knockout, RIG-I-overexpressing B16-F10 and RIG-I knockdown A375 melanoma cell lines, and analyzed the RIG-I-mediated change in the biological behavior of tumor cells in spontaneous and poly (I:C)-induced RIG-I activation. Cell proliferation, cell cycling, apoptosis and migration were detected by CCK-8 assay, BrdU incorporation assay, Annexin V-PI staining assay and Transwell assay, respectively. In vivo tumorigenicity was evaluated by tumor xenograft growth in nude mice and subsequently by Ki67 staining and TUNEL assays. Furthermore, Western blotting was utilized to explore the underlying mechanism of RIG-I in melanoma cells. Our data showed that RIG-I promotes apoptosis and inhibits proliferation by G1 phase cell cycle arrest in the melanoma cell lines. Mechanistically, RIG-I induced the phosphorylation of p38 MAPK and MAPK kinases MKK3 and MKK4. In conclusion, the current study demonstrated that RIG-I suppressed the development of melanoma by regulating the activity of the MKK/p38 MAPK signaling pathway, which is relevant to research on novel therapeutic targets for this malignant disease.


Subject(s)
DEAD Box Protein 58 , Melanoma , Mitogen-Activated Protein Kinase Kinases , Receptors, Immunologic , Skin Neoplasms , Animals , Apoptosis/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Humans , Melanoma/genetics , Mice , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/metabolism , Receptors, Immunologic/genetics , Signal Transduction/genetics , Skin Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Protein Cell ; 13(12): 920-939, 2022 12.
Article in English | MEDLINE | ID: mdl-35377064

ABSTRACT

SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/genetics , Macaca mulatta , SARS-CoV-2/genetics , Transcriptome
19.
Acad Radiol ; 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35151550

ABSTRACT

RATIONALE AND OBJECTIVES: To preoperatively predict lymph node metastasis (LNM) in patients with cervical nonsquamous cell carcinoma (non-SCC) based on magnetic resonance imaging (MRI) texture analysis. MATERIALS AND METHODS: This retrospective study included 104 consecutive patients (mean age of 47.2 ± 11.3 years) with stage IB-IIA cervical non-SCC. According to the ratio of 7:3, 72, and 32 patients were randomly divided into the training and testing cohorts. A total of 272 original features were extracted. In the process of feature selection, features with intraclass correlation coefficients (ICCs) less than 0.8 were eliminated. The Pearson correlation coefficient (PCC) and analysis of variance (ANOVA) were applied to reduce redundancy, overfitting, and selection biases. Further, a support vector machine (SVM) with linear kernel function was applied to select the optimal feature set with a high discrimination power. RESULTS: The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI (LN status on MRI)-based SVM models yielded an AUC and accuracy of 0.78 and 0.79; 0.79 and 0.69; 0.79 and 0.81 for predicting LNM in the training cohort, and 0.82 and 0.78; 0.82 and 0.69; 0.79 and 0.72 in the testing cohort. The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI-based SVM models performed better than morphologic criteria of LNS-MRI and yield similar discrimination abilities in predicting LNM in the training and testing cohorts (all p-value > 0.05). In addition, the T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the AC and ASC subgroups (all p-value > 0.05). CONCLUSION: The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI+DWI+LNS-MRI-based SVM models showed similar good discrimination ability and performed better than the morphologic criteria of LNS-MRI in predicting LNM in patients with cervical non-SCC. The inclusion of the CE-T1WI sequence and morphologic criteria of LNS-MRI did not significantly improve the performance of the T2WI + DWI-based model. The T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the subgroup analysis.

20.
Front Genet ; 12: 771814, 2021.
Article in English | MEDLINE | ID: mdl-34858486

ABSTRACT

Secale cereale is an important crop in the Triticeae tribe of the Poaceae family, and it has unique agronomic characteristics and genome properties. It possesses resistance to many diseases and serves as an important resource for the breeding of other Triticeae crops. We performed a genome-wide study on S. cereale to identify the largest group of plant disease resistance genes (R genes), the nucleotide-binding site-leucine-rich repeat receptor (NBS-LRR) genes. In its genome, 582 NBS-LRR genes were identified, including one from the RNL subclass and 581 from the CNL subclass. The NBS-LRR gene number in the S. cereale genome is greater than that in barley and the diploid wheat genomes. S. cereale chromosome 4 contains the largest number of NBS-LRR genes among the seven chromosomes, which is different from the pattern in barley and the genomes B and D of wheat but similar to that in the genome A of wheat. Further synteny analysis suggests that more NBS-LRR genes on chromosome 4 have been inherited from a common ancestor by S. cereale and the wheat genome A than the wheat genomes B and D. Phylogenetic analysis revealed that at least 740 NBS-LRR lineages are present in the common ancestor of S. cereale, Hordeum vulgare and Triticum urartu. However, most of them have only been inherited by one or two species, with only 65 of them preserved in all three species. The S. cereale genome inherited 382 of these ancestral NBS-LRR lineages, but 120 of them have been lost in both H. vulgare and T. urartu. This study provides the full NBS-LRR profile of the S. cereale genome, which is a resource for S. cereale breeding and indicates that S. cereale can be an important material for the molecular breeding of other Triticeae crops.

SELECTION OF CITATIONS
SEARCH DETAIL
...