Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 106: 110637, 2023 06.
Article in English | MEDLINE | ID: mdl-36813150

ABSTRACT

OBJECTIVE: Adipose tissue remodeling is a dynamic process that is pathologically expedited in the obese state and is closely related to obesity-associated disease progression. This study aimed to explore the effects of human kallistatin (HKS) on adipose tissue remodeling and obesity-related metabolic disorders in mice fed with a high-fat diet (HFD). METHODS: Adenovirus-mediated HKS cDNA (Ad.HKS) and a blank adenovirus (Ad.Null) were constructed and injected into the epididymal white adipose tissue (eWAT) of 8-weeks-old male C57B/L mice. The mice were fed normal or HFD for 28 days. The body weight and circulating lipids levels were assessed. Intraperitoneal glucose tolerance test (IGTT) and insulin tolerance test (ITT) were also performed. Oil-red O staining was used to assess the extent of lipid deposition in the liver. Immunohistochemistry and HE staining were used to measure HKS expression, adipose tissue morphology, and macrophage infiltration. Western blot and qRT-PCR were used to evaluate the expression of adipose function-related factors. RESULTS: At the end of the experiment, the expression of HKS in the serum and eWAT of the Ad.HKS group was higher than in the Ad.Null group. Furthermore, Ad.HKS mice had lower body weight and decreased serum and liver lipid levels after four weeks of HFD feeding. IGTT and ITT showed that HKS treatment maintained balanced glucose homeostasis. Additionally, inguinal white adipose tissue (iWAT) and eWAT in Ad.HKS mice had a higher number of smaller-size adipocytes and had less macrophage infiltration than Ad.Null group. HKS significantly increased the mRNA levels of adiponectin, vaspin, and eNOS. In contrast, HKS decreased RBP4 and TNFα levels in the adipose tissues. Western blot results showed that local injection of HKS significantly upregulated the protein expressions of SIRT1, p-AMPK, IRS1, p-AKT, and GLUT4 in eWAT. CONCLUSIONS: HKS injection in eWAT improves HFD-induced adipose tissue remodeling and function, thus significantly improving weight gain and dysregulation of glucose and lipid homeostasis in mice.


Subject(s)
Intra-Abdominal Fat , Serpins , Humans , Male , Mice , Animals , Mice, Obese , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Body Weight , Glucose/metabolism , Diet, High-Fat , Lipids , Genetic Therapy , Mice, Inbred C57BL , Retinol-Binding Proteins, Plasma/genetics , Retinol-Binding Proteins, Plasma/metabolism , Serpins/genetics , Serpins/metabolism
2.
Adipocyte ; 12(1): 2169227, 2023 12.
Article in English | MEDLINE | ID: mdl-36654490

ABSTRACT

High-fat diet (HFD) can cause obesity, inducing dysregulation of the visceral adipose tissue (VAT). This study aimed to explore potential biological pathways and hub genes involved in obese VAT, and for that, bioinformatic analysis of multiple datasets was performed. The expression profiles (GSE30247, GSE167311 and GSE79434) were downloaded from Gene Expression Omnibus. Overlapping differentially expressed genes (ODEGs) between normal diet and HFD groups in GSE30247 and GSE167311 were selected to run protein-protein interaction network, GO and KEGG analysis. The hub genes in ODEGs were screened by Cytoscape software and further verified in GSE79434 and obese mouse model. A total of 747 ODEGs (599 up-regulated and 148 down-regulated) were screened, and the GO and KEGG analysis showed that the up-regulated ODEGs were significantly enriched in inflammatory response and extracellular matrix receptor interaction pathways. On the other hand, the down-regulated ODEGs were involved in metabolic pathways; however, there were no significant KEGG pathways. Furthermore, six hub genes, Mki67, Rac2, Itgb2, Emr1, Tyrobp and Csf1r were acquired. These pathways and genes were verified in GSE79434 and VAT of obese mice. This study revealed that HFD induced VAT expansion, inflammation and fibrosis, and the hub genes could be used as therapeutic biomarkers in obesity.


Subject(s)
Diet, High-Fat , Intra-Abdominal Fat , Animals , Mice , Biomarkers/metabolism , Computational Biology , Intra-Abdominal Fat/metabolism , Obesity/genetics , Obesity/metabolism
3.
Nanomedicine ; 47: 102618, 2023 01.
Article in English | MEDLINE | ID: mdl-36270453

ABSTRACT

Ferroptosis plays an important role in ischemia-reperfusion (I/R)-induced cardiac injury and there are many defects in current targeted delivery of miRNAs for the treatment of ferroptosis. We herein report a unique hydrogel (Gel) that can be triggered by a near-infrared-II (NIR-II) light with deep tissue penetration and biocompatible maximum permissible exposure (MPE) value for in situ treatment after I/R. The mir-196c-3p mimic (mimics) and photothermal nanoparticles (BTN) were co-encapsulated in an injectable Gel (mimics + Gel/BTN) with NIR-II light-triggered release. Using 1064 nm light irradiation, local microenvironment photothermal-triggered on-demand noninvasive controllable delivery of miRNA was achieved, aiming to inhibit I/R-induced ferroptosis. Consequently, declined ferroptosis in cardiomyocytes and improved cardiac function, survival rate in rats was achieved through the controlled release of Gel/BTN mimics in I/R model to simultaneously inhibit ferroptosis hub genes NOX4, P53, and LOX expression.


Subject(s)
Reperfusion Injury , Animals , Rats
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166441, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35577178

ABSTRACT

BACKGROUND: Fibrotic remodeling is an essential aspect of heart failure. Human kallistatin (KS, mouse Serpina3c homologs) inhibits fibrosis after myocardial infarction (MI) but the specific underlying mechanism is unknown. METHODS: A total of 40 heart failure patients (HFPs) were enrolled and their plasma KS was measured using ELISA. Serpina3c-/- and C57BL/6 mice were used to construct the MI model. TGF-ß1 or a hypoxic condition was established to interfere with the functioning of cardiac fibroblasts (CFs). RNA-seq was performed to assess the effect of Serpina3c on the transcriptome. FINDINGS: The levels of KS were used as a predictor of readmission among the HFPs. Serpina3c expression decreased in MI hearts and CFs. Serpina3c-/- led to the aggravation of MI fibrosis, and increased the proliferation of CFs. The overexpression of Serpina3c in CFs had the opposite effect. Glycolysis-related genes were significantly increased in Serpina3c-/- group by RNA-seq. Enolase (ENO1), which is a key enzyme in glycolysis, increased most significantly. Inhibition of ENO1 could antagonize the promotion of Serpina3c-/- on the proliferation of CFs. Co-IP was performed to verify the interaction between Serpina3c and Nr4a1. Serpina3c-/- inhibited the acetylation of Nr4a1 and increased the degradation of Nr4a1. Activation of Nr4a1 could negatively regulate the expression of ENO1 and inhibited the proliferation of Serpina3c-/- CFs in Serpina3c-/- MI mice. INTERPRETATION: Serpina3c inhibits the transcriptional activation of ENO1 by regulating the acetylation of Nr4a1, thereby reducing the fibrosis after MI by inhibiting glycolysis. Serpina3c is a potential target for prevention and treatment of heart failure after MI.


Subject(s)
Heart Failure , Myocardial Infarction , Nuclear Receptor Subfamily 4, Group A, Member 1 , Serpins , Animals , Disease Models, Animal , Fibrosis , Glycolysis , Humans , Mice , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Serpins/metabolism
5.
FASEB J ; 36(5): e22316, 2022 05.
Article in English | MEDLINE | ID: mdl-35429042

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a public health challenge and an increasing cause of chronic liver disease worldwide. However, the underlying molecular mechanism remains unclear. The aim of this study was to determine the precise role of serpina3c in the process of NAFLD. Male Apoe-/- /serpina3c-/- double knockout (DKO) and Apoe-/- mice were fed a high-fat diet (HFD) for 12 weeks. Several markers of steatosis and inflammation were evaluated. In vitro cell models induced by palmitic acid (PA) treatment were used to evaluate the beneficial effect of serpina3c on necroptosis and the underlying molecular mechanism. Compared with Apoe-/- mice, DKO mice exhibited a significantly exacerbated hepatic steatosis, increased hepatic triglyceride content and expression of genes involved in lipid metabolism (SREBP1c and SCD1), promoted hepatic inflammation and fibrosis, promoted necroptosis by increasing expression of receptor-interacting protein 3 (RIP3), phosphorylated mixed lineage kinase domain-like (MLKL) and high mobility group box 1 (HMGB1). Notably, serpina3c deficiency increased ß-catenin, Foxo1, and Toll-like receptor 4 (TLR4) protein expression. In vitro , serpina3c knockdown promoted necroptosis and lipid droplet formation under condition of lipotoxicity. However, these phenomena were reversed by the overexpression of serpina3c. Mechanistically, downregulation of serpina3c expression promoted Foxo1 and ß-catenin colocalized in the nucleus under condition of lipotoxicity, consequently upregulating the expression of TLR4. Conversely, disruption of Foxo1-ß/catenin by Foxo1 and ß-catenin inhibitors decreased TLR4 expression and ameliorated hepatic necroptosis in vitro. This study highlights a novel mechanism that serpina3c modulates NAFLD development by inhibiting necroptosis via ß-catenin/Foxo1/TLR4.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Apolipoproteins E/metabolism , Diet, High-Fat/adverse effects , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Inflammation/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Necroptosis , Non-alcoholic Fatty Liver Disease/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , beta Catenin/genetics , beta Catenin/metabolism
6.
Clin Sci (Lond) ; 135(3): 447-463, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33458764

ABSTRACT

Abnormal vascular smooth muscle cell (VSMC) proliferation is a critical step in the development of atherosclerosis. Serpina3c is a serine protease inhibitor (serpin) that plays a key role in metabolic diseases. The present study aimed to investigate the role of serpina3c in atherosclerosis and regulation of VSMC proliferation and possible mechanisms. Serpina3c is down-regulated during high-fat diet (HFD)-induced atherosclerosis. An Apoe-/-/serpina3c-/--double-knockout mouse model was used to determine the role of serpina3c in atherosclerosis after HFD for 12 weeks. Compared with Apoe-/- mice, the Apoe-/-/serpina3c-/- mice developed more severe atherosclerosis, and the number of VSMCs and macrophages in aortic plaques was significantly increased. The present study revealed serpina3c as a novel thrombin inhibitor that suppressed thrombin activity. In circulating plasma, thrombin activity was high in the Apoe-/-/serpina3c-/- mice, compared with Apoe-/- mice. Immunofluorescence staining showed thrombin and serpina3c colocalization in the liver and aortic cusp. In addition, inhibition of thrombin by dabigatran in serpina3c-/- mice reduced neointima lesion formation due to partial carotid artery ligation. Moreover, an in vitro study confirmed that thrombin activity was also decreased by serpina3c protein, supernatant and cell lysate that overexpressed serpina3c. The results of experiments showed that serpina3c negatively regulated VSMC proliferation in culture. The possible mechanism may involve serpina3c inhibition of ERK1/2 and JNK signaling in thrombin/PAR-1 system-mediated VSMC proliferation. Our results highlight a protective role for serpina3c as a novel thrombin inhibitor in the development of atherosclerosis, with serpina3c conferring protection through the thrombin/PAR-1 system to negatively regulate VSMC proliferation through ERK1/2 and JNK signaling.


Subject(s)
Atherosclerosis/metabolism , Serpins/pharmacology , Thrombin/drug effects , Animals , Antithrombins/pharmacology , Aorta , Apolipoproteins E/deficiency , Atherosclerosis/pathology , Cells, Cultured , Dabigatran/pharmacology , Diet, High-Fat , Male , Mice, Inbred C57BL , Mice, Knockout , Neointima , Plaque, Atherosclerotic/metabolism , Serpins/genetics , Signal Transduction
7.
Cell Signal ; 75: 109745, 2020 11.
Article in English | MEDLINE | ID: mdl-32828866

ABSTRACT

BACKGROUND: Serpina3 is a member of the serine protease inhibitor family and is involved in the inflammatory response. In this study, we investigated the effect of Serpina3c on pancreatic function in hypercholesterolemic mice. METHODS: To investigate the role of Serpina3c in hyperlipidaemia, Serpina3c knockout mice were bred with Apoe-knockout mice (on a C57BL/6 background) to generate heterozygous Serpina3c-Apoe double knockout (Serpina3c+/-/Apoe+/-) mice and were then bred to obtain homozygotes. C57BL/6, Serpina3c-/-, Apoe-/-, and Apoe-/-Serpina3c-/- mice were fed normal chow, and Apoe-/- and Apoe-/-Serpina3c-/- mice were fed a high-fat diet (HFD). After feeding for 3 months, the mice were monitored for body weight, blood glucose, glucose tolerance, and insulin tolerance test (ITT). ELISA and immunohistochemistry were used to detect insulin levels and glucagon expression. Immunohistochemical staining for macrophages in the pancreas was also performed. Western blot analysis was performed on pancreatic tissues to detect the protein levels of insulin-associated molecules, the metalloproteinase MMP2, the tissue inhibitor TIMP2 and components of the JNK-related pathway. RESULTS: Blood glucose levels, glucose tolerance, and ITT were not significantly different among the groups. Serpina3c knockout resulted in blood lipid abnormalities in mice under HFD conditions. Insulin secretion was decreased in Apoe-/-Serpina3c-/- mice compared with Apoe-/- mice under normal chow conditions. In addition, Apoe-/-Serpina3c-/- mice exhibited increased insulin and glucagon secretion and expression after three months of HFD feeding, but insulin secretion was decreased in Apoe-/-Serpina3c-/- mice compared with Apoe-/- mice after the fifth month of HFD feeding. Serpina3c knockout increased MMP2 protein levels, whereas TIMP2 levels in the pancreas were decreased. Furthermore, Serpina3c knockout significantly upregulated the number of macrophages in the pancreas under HFD conditions. The JNK/AKT/FOXO1/PDX-1 axis was found to be involved in Serpina3c-regulated insulin secretion. CONCLUSION: These novel findings show that Serpina3c could play a protective role in insulin secretion partly through the JNK-related pathway under HFD conditions.


Subject(s)
Hypercholesterolemia/metabolism , Insulin/metabolism , MAP Kinase Signaling System , Pancreatic Diseases/metabolism , Serpins/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE
SELECTION OF CITATIONS
SEARCH DETAIL
...