Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Front Immunol ; 15: 1428551, 2024.
Article in English | MEDLINE | ID: mdl-39086479

ABSTRACT

Background: Myocardial inflammation and apoptosis induced by cirrhosis are among the primary mechanisms of cirrhotic cardiomyopathy. CD73, a common extracellular nucleotidase also known as 5'-nucleotidase, is associated with the progression of inflammation and immunity in multiple organs. However, the mechanism by which CD73 contributes to myocardial inflammation and apoptosis in cirrhosis remains unclear. Methods: In this study, a cirrhotic cardiomyopathy model in mice was established by bile duct ligation. Myocardial-specific overexpression of CD73 was achieved by tail vein injection of AAV9 (adeno-associated virus)-cTNT-NT5E-mCherry, and cardiac function in mice was assessed using echocardiography. Myocardial inflammation infiltration and apoptosis were evaluated through pathological observation and ELISA assays. The expression of CD73, A2AR, apoptotic markers, and proteins related to the NF-κB pathway in myocardial tissue were measured. Results: In the myocardial tissue of the cirrhotic cardiomyopathy mouse model, the expression of CD73 and A2AR increased. Overexpression of CD73 in the myocardium via AAV9 injection and stimulation of A2AR with CGS 21680 inhibited myocardial inflammation and cardiomyocyte apoptosis induced by cirrhosis. Additionally, overexpression of CD73 suppressed the activation of the NF-κB pathway by upregulating the expression of the adenosine receptor A2A. Conclusion: Our study reveals that the CD73/A2AR signaling axis mitigates myocardial inflammation and apoptosis induced by cirrhosis through negative feedback regulation of the NF-κB pathway.


Subject(s)
5'-Nucleotidase , Cardiomyopathies , Liver Cirrhosis , NF-kappa B , Receptor, Adenosine A2A , Signal Transduction , Animals , 5'-Nucleotidase/metabolism , NF-kappa B/metabolism , Mice , Receptor, Adenosine A2A/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/immunology , Liver Cirrhosis/immunology , Liver Cirrhosis/metabolism , Male , Feedback, Physiological , Apoptosis , Disease Models, Animal , Mice, Inbred C57BL , GPI-Linked Proteins
2.
Rev Cardiovasc Med ; 25(4): 127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39076535

ABSTRACT

Atrial fibrillation (AF) is one of the most common cardiac arrhythmias, with its diagnosis being closely tied to higher rates of cardiovascular morbidity and mortality. AF is associated with a range of dangerous complications including stroke and heart failure, making it a key driver of healthcare spending and a major threat to global public health. The precise mechanisms that govern AF incidence and the onset of related complications, however, remain uncertain. Ferroptotic cell death has been the focus of rising interest in the cardiac arrhythmias, and there is recent evidence supporting a role for atrial ferroptosis as a mediator of AF development. Interventional strategies focused on ferroptotic activity, such as novel ferroptosis inhibitors, have also shown promise as a means of protecting against AF through their ability to reduce iron overload. In this review, we provide a summary of the proposed mechanisms whereby ferroptosis contributes to the pathophysiology of AF and their therapeutic implications.

3.
Mikrochim Acta ; 191(7): 422, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38922459

ABSTRACT

Since 2017, an infectious goose gout disease characterized by urate precipitation in viscera, mainly caused by novel goose astrovirus (GoAstV) infection, has emerged in the main goose-producing region of China. The current challenge in managing goose gout disease is largely due to the absence of a rapid and efficient detection method for the GoAstV pathogen. Notably, the potential application of immunosensors in detecting GoAstV has not yet been explored. Herein, a label-free PEC immunosensor was fabricated by using purchased TiO2 as the photoactive material and antibody against GoAstV P2 proteins as the specific recognition element. First, we successfully expressed the capsid spike domain P2 protein of ORF2 from GoAstV CHSH01 by using the pET prokaryotic expression system. Meanwhile, the polyclonal antibody against GoAstV capsid P2 protein was produced by purified protein. To our knowledge, this is the first establishment and preliminary application of the label-free photoelectrochemical immunosensor method in the detection of AstV. The PEC immunosensor had a linear range of 1.83 fg mL-1 to 3.02 ng mL-1, and the limit of detection (LOD) was as low as 0.61 fg mL-1. This immunosensor exhibited high sensitivity, great specificity, and good stability in detecting GoAstV P2 proteins. To evaluate the practical application of the immunosensor in real-world sample detection, allantoic fluid from goose embryos was collected as test samples. The results indicated that of the eight positive samples, one false negative result was detected, while both negative samples were accurately detected, suggesting that the constructed PEC immunosensor had good applicability and practical application value, providing a platform for the qualitative detection of GoAstV.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Limit of Detection , Titanium , Biosensing Techniques/methods , Electrochemical Techniques/methods , Animals , Immunoassay/methods , Titanium/chemistry , Geese , Capsid Proteins/immunology , Capsid Proteins/chemistry , Avastrovirus/chemistry , Avastrovirus/immunology , Antibodies, Immobilized/immunology , Antibodies, Immobilized/chemistry , Antibodies, Viral/immunology , Photochemical Processes
4.
J Mol Med (Berl) ; 102(8): 1001-1007, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937302

ABSTRACT

The global incidence and prevalence of arrhythmias are continuously increasing. However, the precise mechanisms of underlying arrhythmogenesis and the optimal measures for effective treatment remain incompletely understood. The inducible form of heme oxygenase, known as heme oxygenase-1 (HO-1), is recognized as a potent antioxidant molecule capable of exerting anti-inflammatory and anti-apoptotic effects. Recent research indicates that HO-1 plays a role in preventing arrhythmias by mitigating cardiac remodeling, including electrical remodeling, ion remodeling, and structural remodeling. This review aimed to consolidate current knowledge regarding the involvement of HO-1 in arrhythmias and elucidate its underlying mechanisms of action.


Subject(s)
Arrhythmias, Cardiac , Heme Oxygenase-1 , Humans , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/drug therapy , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Animals
5.
World J Diabetes ; 15(5): 867-875, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38766431

ABSTRACT

Diabetes mellitus is a prevalent disorder with multi-system manifestations, causing a significant burden in terms of disability and deaths globally. Angio-tensin receptor-neprilysin inhibitor (ARNI) belongs to a class of medications for treating heart failure, with the benefits of reducing hospitalization rates and mortality. This review mainly focuses on the clinical and basic investigations related to ARNI and diabetic complications, discussing possible physiological and molecular mechanisms, with insights for future applications.

6.
Int J Cardiol Cardiovasc Risk Prev ; 21: 200286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38813099

ABSTRACT

Background: Ventricular arrhythmias (VAs) mainly occur in the early post-myocardial infarction (MI) period. However, studies examining the association between total myocardial ischemia time interval and the risk of new-onset VAs during a long-term follow-up are scarce. Methods: This study (symptom-to-balloon time and VEntricular aRrhYthmias in patients with STEMI, VERY-STEMI study) was a multicenter, observational cohort and real-world study, which included patients with ST-segment elevation MI (STEMI) undergoing percutaneous coronary intervention (PCI). The primary endpoint was cumulative new-onset VAs during follow-up. The secondary endpoints were the major adverse cardiovascular events (MACE) and changes in left ventricular ejection fraction (ΔLVEF, %). Results: A total of 517 patients with STEMI were included and 236 primary endpoint events occurred. After multivariable adjustments, compared to patients with S2BT of 24 h-7d, those with S2BT ≤ 24 h and S2BT > 7d had a lower risk of primary endpoint. RCS showed an inverted U-shaped relationship between S2BT and the primary endpoint, with an S2BT of 68.4 h at the inflection point. Patients with S2BT ≤ 24 h were associated with a lower risk of MACE and a 4.44 increase in LVEF, while there was no significant difference in MACE and LVEF change between the S2BT > 7d group and S2BT of 24 h-7d group. Conclusions: S2BT of 24 h-7d in STEMI patients was associated with a higher risk of VAs during follow-up. There was an inverted U-shaped relationship between S2BT and VAs, with the highest risk at an S2BT of 68.4 h.

7.
Heliyon ; 10(4): e25616, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38375275

ABSTRACT

Pigs are natural host to various zoonotic pathogens including viruses. In this study, we analyzed the viral communities in the feces of 89 piglets with diarrhea under one month old which were collected from six farms in Jiangsu Province of the Eastern China, using the unbiased virus metagenomic method. A total of 89 libraries were constructed, and 46937894 unique sequence reads were generated by Illumina sequencing. Overall, the family Picornaviridae accounted for the majority of the total reads of putative mammalian viruses. Ten novel virus genomes from different family members were discovered, including Parvoviridae (n = 2), Picobirnaviridae (n = 4) and CRESS DNA viruses (n = 4). A large number of phages were identified, which mainly belonged to the order Caudovirales and the family Microviridae. Moreover, some identified viruses were closely related to viruses found in non-porcine hosts, highlighting the potential for cross-species virus dissemination. This study increased our understanding of the fecal virus communities of diarrhea piglets and provided valuable information for virus monitoring and preventing.

8.
Nat Metab ; 6(3): 578-597, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409604

ABSTRACT

Emerging evidence suggests that modulation of gut microbiota by dietary fibre may offer solutions for metabolic disorders. In a randomized placebo-controlled crossover design trial (ChiCTR-TTRCC-13003333) in 37 participants with overweight or obesity, we test whether resistant starch (RS) as a dietary supplement influences obesity-related outcomes. Here, we show that RS supplementation for 8 weeks can help to achieve weight loss (mean -2.8 kg) and improve insulin resistance in individuals with excess body weight. The benefits of RS are associated with changes in gut microbiota composition. Supplementation with Bifidobacterium adolescentis, a species that is markedly associated with the alleviation of obesity in the study participants, protects male mice from diet-induced obesity. Mechanistically, the RS-induced changes in the gut microbiota alter the bile acid profile, reduce inflammation by restoring the intestinal barrier and inhibit lipid absorption. We demonstrate that RS can facilitate weight loss at least partially through B. adolescentis and that the gut microbiota is essential for the action of RS.


Subject(s)
Gastrointestinal Microbiome , Animals , Humans , Male , Mice , Obesity/microbiology , Overweight , Resistant Starch , Weight Gain , Weight Loss , Cross-Over Studies
9.
Mol Biol Rep ; 51(1): 329, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393658

ABSTRACT

Ventricular arrhythmias are the leading cause of sudden cardiac death in patients after myocardial infarction (MI). Connexin43 (Cx43) is the most important gap junction channel-forming protein in cardiomyocytes. Dysfunction of Cx43 contributes to impaired myocardial conduction and the development of ventricular arrhythmias. Following an MI, Cx43 undergoes structural remodeling, including expression abnormalities, and redistribution. These alterations detrimentally affect intercellular communication and electrical conduction within the myocardium, thereby increasing the susceptibility to post-infarction ventricular arrhythmias. Emerging evidence suggests that post-translational modifications play essential roles in Cx43 regulation after MI. Therefore, Cx43-targeted management has the potential to be a promising protective strategy for the prevention and treatment of post infarction ventricular arrhythmias. In this article, we primarily reviewed the regulatory mechanisms of Cx43 mediated post-translational modifications on post-infarction ventricular arrhythmias. Furthermore, Cx43-targeted therapy have also been discussed, providing insights into an innovative treatment strategy for ventricular arrhythmias after MI.


Subject(s)
Connexin 43 , Myocardial Infarction , Humans , Arrhythmias, Cardiac/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Myocardial Infarction/complications , Myocardial Infarction/metabolism , Myocardium/metabolism , Protein Processing, Post-Translational
10.
Diabetes Metab J ; 48(4): 716-729, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38408883

ABSTRACT

BACKGRUOUND: Diabetes-induced cardiac fibrosis is one of the main mechanisms of diabetic cardiomyopathy. As a common histone methyltransferase, enhancer of zeste homolog 2 (EZH2) has been implicated in fibrosis progression in multiple organs. However, the mechanism of EZH2 in diabetic myocardial fibrosis has not been clarified. METHODS: In the current study, rat and mouse diabetic model were established, the left ventricular function of rat and mouse were evaluated by echocardiography and the fibrosis of rat ventricle was evaluated by Masson staining. Primary rat ventricular fibroblasts were cultured and stimulated with high glucose (HG) in vitro. The expression of histone H3 lysine 27 (H3K27) trimethylation, EZH2, and myocardial fibrosis proteins were assayed. RESULTS: In STZ-induced diabetic ventricular tissues and HG-induced primary ventricular fibroblasts in vitro, H3K27 trimethylation was increased and the phosphorylation of EZH2 was reduced. Inhibition of EZH2 with GSK126 suppressed the activation, differentiation, and migration of cardiac fibroblasts as well as the overexpression of the fibrotic proteins induced by HG. Mechanical study demonstrated that HG reduced phosphorylation of EZH2 on Thr311 by inactivating AMP-activated protein kinase (AMPK), which transcriptionally inhibited peroxisome proliferator-activated receptor γ (PPAR-γ) expression to promote the fibroblasts activation and differentiation. CONCLUSION: Our data revealed an AMPK/EZH2/PPAR-γ signal pathway is involved in HG-induced cardiac fibrosis.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Enhancer of Zeste Homolog 2 Protein , Fibrosis , Myocardium , PPAR gamma , Signal Transduction , Animals , Enhancer of Zeste Homolog 2 Protein/metabolism , PPAR gamma/metabolism , Mice , Rats , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/etiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Male , AMP-Activated Protein Kinases/metabolism , Myocardium/pathology , Myocardium/metabolism , Rats, Sprague-Dawley , Fibroblasts/metabolism , Mice, Inbred C57BL , Cells, Cultured , Phosphorylation
12.
Diabetes Metab Syndr Obes ; 17: 247-257, 2024.
Article in English | MEDLINE | ID: mdl-38269338

ABSTRACT

Purpose: The aim of this study was to investigate the effects and mechanisms of SGLT2 inhibitor empagliflozin on diabetic coronary function. Methods: A rat diabetic model was established by injection of streptozotocin. Rats in the treated group were administered empagliflozin by gavage and rat coronary vascular tensions were measured after eight weeks. Large conductance calcium activated K+ channel currents were recorded using a patch clamp technique, while human coronary artery smooth muscle cells were used to explore the underlying mechanisms. Results: After incubation with empagliflozin (10, 30, 100, 300, 1000 µmol/L), the Δ relaxation % of rat coronary arteries were 2.459 ± 1.304, 3.251 ± 1.119, 6.946 ± 3.407, 28.36 ± 11.47, 86.90 ± 3.868, respectively. Without and with empagliflozin in the bath solution, BK channel opening probabilities at a membrane potential of +60 mV were 0.0458 ± 0.0517 and 0.3413 ± 0.2047, respectively (p < 0.05, n = 4 cells). After incubation with iberiotoxin, the Δ tensions of rat coronary arteries in the control (Ctrl), untreated (DM), low empagliflozin (10 mg/kg/d)-treated (DM+L-EMPA) and high empagliflozin (30mg/kg/d)-treated (DM+H-EMPA) group were 103.20 ± 5.85, 40.37 ± 22.12, 99.47 ± 28.51, 78.06 ± 40.98, respectively (p < 0.01 vs Ctrl, n = 3-7; p < 0.001 vs DM+L-EMPA, n = 5-7). Empagliflozin restored high glucose-induced downregulation of Sirt1, Nrf2, and BK-ß1, while the effect of empagliflozin disappeared in the presence of EX-527, a Sirt1 selective inhibitor. Conclusion: Empagliflozin has a vasodilation effect on the coronary arteries in a concentration-dependent manner and can activate BK channels via the Sirt1-Nrf2 mechanism.

13.
Eur J Pharmacol ; 961: 176167, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37939994

ABSTRACT

BACKGROUND: Recent evidence revealed that glucose fluctuation might be more likely to cause arrhythmia than persistent hyperglycemia, whereas its mechanisms were elusive. We aimed to investigate the effect of glucose fluctuation on the occurrence of ventricular arrhythmia and its mechanism. METHODS: Streptozotocin (STZ) induced diabetic rats were randomized to five groups: the controlled blood glucose (C-STZ) group, uncontrolled blood glucose (U-STZ) group, fluctuated blood glucose (GF-STZ) group, and GF-STZ rats with 100 mg/kg Tempol (GF-STZ + Tempol) group or with 5 mg/kg KN93 (GF-STZ + KN93) group. Six weeks later, the susceptibility of ventricular arrhythmias and the electrophysiological dysfunctions of ventricular myocytes were evaluated using electrocardiogram and patch-clamp technique, respectively. The levels of reactive oxygen species (ROS) and oxidized CaMKII (ox-CaMKII) were determined by fluorescence assay and Western blot, respectively. Neonatal rat cardiomyocytes and H9C2 cells in vitro were used to explore the underlying mechanisms. RESULTS: The induction rate of ventricular arrhythmias was 10%, 55%, and 90% in C-STZ group, U-STZ group, and GF-STZ group, respectively (P < 0.05). The electrophysiological dysfunctions of ventricular myocytes, including action potential duration at repolarization of 90% (APD90), APD90 short-term variability (APD90-STV), late sodium current (INa-L), early after depolarization (EAD) and delayed after depolarizations (DAD), as well as the levels of ROS and ox-CaMKII, were significantly increased in GF-STZ group. In vivo and ex vivo, inhibition of ROS or ox-CaMKII reversed these effects. Inhibition of INa-L also significantly alleviated the electrophysiological dysfunctions. In vitro, inhibition of ROS increase could significantly decrease the ox-CaMKII activation induced by glucose fluctuations. CONCLUSIONS: Glucose fluctuations aggravated the INa-L induced ventricular arrhythmias though the activation of ROS/CaMKII pathway.


Subject(s)
Diabetes Mellitus, Experimental , Glucose , Animals , Rats , Action Potentials , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Blood Glucose/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Myocytes, Cardiac , Reactive Oxygen Species/metabolism , Sodium/metabolism
14.
Eat Weight Disord ; 28(1): 84, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861729

ABSTRACT

Obesity is a public health crisis, presenting a huge burden on health care and the economic system in both developed and developing countries. According to the WHO's latest report on obesity, 39% of adults of age 18 and above are obese, with an increase of 18% compared to the last few decades. Metabolic energy imbalance due to contemporary lifestyle, changes in gut microbiota, hormonal imbalance, inherent genetics, and epigenetics is a major contributory factor to this crisis. Multiple studies have shown that probiotics and their metabolites (postbiotics) supplementation have an effect on obesity-related effects in vitro, in vivo, and in human clinical investigations. Postbiotics such as the SCFAs suppress obesity by regulating metabolic hormones such as GLP-1, and PPY thus reducing feed intake and suppressing appetite. Furthermore, muramyl di-peptides, bacteriocins, and LPS have been tested against obesity and yielded promising results in both human and mice studies. These insights provide an overview of targetable pharmacological sites and explore new opportunities for the safer use of postbiotics against obesity in the future.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Probiotics , Adult , Humans , Mice , Animals , Adolescent , Obesity/genetics , Obesity/metabolism , Probiotics/therapeutic use , Epigenesis, Genetic
15.
Diabetol Metab Syndr ; 15(1): 217, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37891701

ABSTRACT

BACKGROUND: Glucose fluctuations (GF) are a risk factor for cardiovascular complications associated with type 2 diabetes. However, there is a lack of adequate research on the effect of GF on myocardial fibrosis and the underlying mechanisms in type 2 diabetes. This study aimed to investigate the impact of glucose fluctuations on myocardial fibrosis and explore the potential mechanisms in type 2 diabetes. METHODS: Sprague Dawley (SD) rats were randomly divided into three groups: the control (Con) group, the type 2 diabetic (DM) group and the glucose fluctuations (GF) group. The type 2 diabetic rat model was established using a high-fat diet combined with low-dose streptozotocin injection and the GF model was induced by using staggered glucose and insulin injections daily. After eight weeks, echocardiography was used to assess the cardiac function of the three groups. Hematoxylin-eosin and Masson staining were utilized to evaluate the degree of pathological damage and fibrosis. Meanwhile, a neonatal rat cardiac fibroblast model with GF was established. Western and immunofluorescence were used to find the specific mechanism of myocardial fibrosis caused by GF. RESULTS: Compared with rats in the Con and the DM group, cardiac function in the GF group showed significant impairments. Additionally, the results showed that GF aggravated myocardial fibrosis in vitro and in vivo. Moreover, Ca2+/calmodulin­dependent protein kinase II (CaMKII) was activated by phosphorylation, prompting an increase in phosphorylation of signal transducer and activator of transcription 3 (Stat3) and induced nuclear translocation. Pretreatment with KN-93 (a CaMKII inhibitor) blocked GF-induced Stat3 activation and significantly suppressed myocardial fibrosis. CONCLUSIONS: Glucose fluctuations exacerbate myocardial fibrosis by triggering the CaMKII/Stat3 pathway in type 2 diabetes.

16.
Diabetes Metab Syndr Obes ; 16: 3045-3056, 2023.
Article in English | MEDLINE | ID: mdl-37810573

ABSTRACT

Purpose: Diabetes mellitus is an independent risk factor for atrial fibrillation (AF), which may be related to accumulation of advanced glycation end products (AGEs). However, the mechanisms involved are not completely clear. Abnormality of gap junction proteins, especially connexin 43 (Cx43) and connexin 40 (Cx40) in atrial myocytes, is an important cause of increased susceptibility of AF. The aim of our work is to investigate the mechanism of dysregulated Cx43 and Cx40 in atrial myocytes of diabetic rats. Methods: We established a type 1 diabetic rat model by intraperitoneal injection of streptozotocin. HL-1 cells and primary rat atrial myocytes were treated with AGEs in vitro. Using Western blotting, immunofluorescence staining, immunohistochemistry, and lucifer yellow diffusion measurements, we investigated dysregulation of Cx43 and Cx40 and its mechanism in atrial myocytes of diabetic rats. Results: Accumulation of AGEs was found in diabetic rats. The expression of Cx43 and Cx40 was reduced in the atrium of diabetic rats, accompanied by the decrease of phosphorylated Adenosine 5'-monophosphate-activated protein kinase (p-AMPK). Similar results were found in cultured HL-1 cells and primary rat atrial myocytes, suggesting a role of AGEs on gap junction proteins. An AMPK agonist, 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), reversed the down-regulated Cx43 expression induced by AGEs stimulation. More importantly, lucifer yellow diffusion assay showed that AGEs significantly affected gap junctional function, and these changes were reversed by AICAR. Conclusion: Thus, we conclude that AGEs cause dysregulation of Cx43 and Cx40 in diabetic atria via the AMPK pathway, thereby leading to gap junction dysfunction, which may contribute to the increased AF susceptibility in diabetes.

17.
Cell Metab ; 35(9): 1530-1547.e8, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37673036

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic dysfunction for which effective interventions are lacking. To investigate the effects of resistant starch (RS) as a microbiota-directed dietary supplement for NAFLD treatment, we coupled a 4-month randomized placebo-controlled clinical trial in individuals with NAFLD (ChiCTR-IOR-15007519) with metagenomics and metabolomics analysis. Relative to the control (n = 97), the RS intervention (n = 99) resulted in a 9.08% absolute reduction of intrahepatic triglyceride content (IHTC), which was 5.89% after adjusting for weight loss. Serum branched-chain amino acids (BCAAs) and gut microbial species, in particular Bacteroides stercoris, significantly correlated with IHTC and liver enzymes and were reduced by RS. Multi-omics integrative analyses revealed the interplay among gut microbiota changes, BCAA availability, and hepatic steatosis, with causality supported by fecal microbiota transplantation and monocolonization in mice. Thus, RS dietary supplementation might be a strategy for managing NAFLD by altering gut microbiota composition and functionality.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Non-alcoholic Fatty Liver Disease , Animals , Mice , Resistant Starch , Triglycerides , Humans
18.
BMC Cardiovasc Disord ; 23(1): 474, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735624

ABSTRACT

BACKGROUND: Diabetes is associated with myocardial fibrosis, while the underlying mechanisms remain elusive. The aim of this study is to investigate the underlying role of calcineurin/nuclear factor of activated T cell 3 (CaN/NFATc3) pathway and the Enhancer of zeste homolog 2 (EZH2) in diabetes-related myocardial fibrosis. METHODS: Streptozotocin (STZ)-injected diabetic rats were randomized to two groups: the controlled glucose (Con) group and the diabetes mellitus (DM) group. Eight weeks later, transthoracic echocardiography was used for cardiac function evaluation, and myocardial fibrosis was visualized by Masson trichrome staining. The primary neonatal rat cardiac fibroblasts were cultured with high-glucose medium with or without cyclosporine A or GSK126. The expression of proteins involved in the pathway was examined by western blotting. The nuclear translocation of target proteins was assessed by immunofluorescence. RESULTS: The results indicated that high glucose treatment increased the expression of CaN, NFATc3, EZH2 and trimethylates lysine 27 on histone 3 (H3K27me3) in vitro and in vivo. The inhibition of the CaN/NFATc3 pathway alleviated myocardial fibrosis. Notably, inhibition of CaN can inhibit the nuclear translocation of NFATc3, and the expression of EZH2 and H3K27me3 protein induced by high glucose. Moreover, treatment with GSK126 also ameliorated myocardial fibrosis. CONCLUSION: Diabetes can possibly promote myocardial fibrosis by activating of CaN/NFATc3/EZH2 pathway.


Subject(s)
Calcineurin , Diabetes Mellitus, Experimental , Animals , Rats , Diabetes Mellitus, Experimental/complications , Enhancer of Zeste Homolog 2 Protein/genetics , Fibroblasts , Glucose , Histones , NFATC Transcription Factors
19.
Diab Vasc Dis Res ; 20(4): 14791641231197107, 2023.
Article in English | MEDLINE | ID: mdl-37592725

ABSTRACT

Background: Advanced glycation end products (AGEs) impair vascular physiology in Diabetes mellitus (DM). However, the underlying mechanisms remain unclear. Vascular large conductance calcium-activated potassium (BK) channels play important roles in coronary arterial function.Purpose: Our study aimed to investigate the regulatory role of AGEs in BK channels.Research Design: Using gavage of vehicle (V, normal saline) or aminoguanidine (A) for 8 weeks, normal and diabetic rats were divided into four groups: C+V group, DM+V group, C+A group, and DM+A group.Study Sample: Coronary arteries from different groups of rats and human coronary smooth muscle cells were used in this study.Data Collection and Analysis: Data were presented as mean ± SEM (standard error of mean). Student's t-test was used to compare data between two groups. One-way ANOVA with post-hoc LSD analysis was used to compare data between multiple groups.Results: Compared to the C+V group, vascular contraction induced by iberiotoxin (IBTX), a BK channel inhibitor, was impaired, and BK channel densities decreased in the DM+V group. However, aminoguanidine administration reduced the impairment. Protein expression of BK-ß1, phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), and protein kinase B (PKB or Akt) were down-regulated, while F-box protein 32 (FBXO32) expression increased in the DM+V group and in high glucose (HG) cultured human coronary smooth muscle cells. Treatment with aminoguanidine in vitro and in vivo could reverse the above protein expression. The effect of aminoguanidine on the improvement of BK channel function by inhibiting the generation of AGEs was reversed by adding MK2206 (Akt inhibitor) or Compound C (AMPK inhibitor) in HG conditions in vitro.Conclusions: AGEs aggravate BK channel dysfunction via the AMPK/Akt/FBXO32 signaling pathway.


Subject(s)
Coronary Vessels , Diabetes Mellitus, Experimental , Rats , Humans , Animals , Coronary Vessels/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channels/pharmacology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Signal Transduction , Glycation End Products, Advanced/metabolism , Myocytes, Smooth Muscle , Muscle Proteins/metabolism , Muscle Proteins/pharmacology , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/pharmacology
20.
PeerJ ; 11: e15591, 2023.
Article in English | MEDLINE | ID: mdl-37404479

ABSTRACT

Background: Nonresolving inflammation is a major driver of disease and needs to be taken seriously. Hypoxia-inducible factor (HIF) is closely associated with inflammation. Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs), as stabilizers of HIF, have recently been reported to have the ability to block inflammation. We used MK8617, a novel HIF-PHI, to study its effect on macrophage inflammation and to explore its possible mechanisms. Methods: Cell viability after MK8617 and lipopolysaccharide (LPS) addition was assessed by Cell Counting Kit-8 (CCK8) to find the appropriate drug concentration. MK8617 pretreated or unpretreated cells were then stimulated with LPS to induce macrophage polarization and inflammation. Inflammatory indicators in cells were assessed by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR), western blot (WB) and immunofluorescence (IF). The level of uridine diphosphate glucose (UDPG) in the cell supernatant was measured by ELISA. Purinergic G protein-coupled receptor P2Y14, as well as hypoxia-inducible factor-1α (HIF-1α) and glycogen synthase 1 (GYS1) were detected by qRT-PCR and WB. After UDPG inhibition with glycogen phosphorylase inhibitor (GPI) or knockdown of HIF-1α and GYS1 with lentivirus, P2Y14 and inflammatory indexes of macrophages were detected by qRT-PCR and WB. Results: MK8617 reduced LPS-induced release of pro-inflammatory factors as well as UDPG secretion and P2Y14 expression. UDPG upregulated P2Y14 and inflammatory indicators, while inhibition of UDPG suppressed LPS-induced inflammation. In addition, HIF-1α directly regulated GYS1, which encoded glycogen synthase, an enzyme that mediated the synthesis of glycogen by UDPG, thereby affecting UDPG secretion. Knockdown of HIF-1α and GYS1 disrupted the anti-inflammatory effect of MK8617. Conclusions: Our study demonstrated the role of MK8617 in macrophage inflammation and revealed that its mechanism of action may be related to the HIF-1α/GYS1/UDPG/P2Y14 pathway, providing new therapeutic ideas for the study of inflammation.


Subject(s)
Glycogen Synthase , Uridine Diphosphate Glucose , Humans , Uridine Diphosphate Glucose/metabolism , Glycogen Synthase/metabolism , Lipopolysaccharides/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation/chemically induced , Macrophages , Hypoxia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...