Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 282: 120372, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37748558

ABSTRACT

Source imaging of Electroencephalography (EEG) and Magnetoencephalography (MEG) provides a noninvasive way of monitoring brain activities with high spatial and temporal resolution. In order to address this highly ill-posed problem, conventional source imaging models adopted spatio-temporal constraints that assume spatial stability of the source activities, neglecting the transient characteristics of M/EEG. In this work, a novel source imaging method µ-STAR that includes a microstate analysis and a spatio-temporal Bayesian model was introduced to address this problem. Specifically, the microstate analysis was applied to achieve automatic determination of time window length with quasi-stable source activity pattern for optimal reconstruction of source dynamics. Then a user-specific spatial prior and data-driven temporal basis functions were utilized to characterize the spatio-temporal information of sources within each state. The solution of the source reconstruction was obtained through a computationally efficient algorithm based upon variational Bayesian and convex analysis. The performance of the µ-STAR was first assessed through numerical simulations, where we found that the determination and inclusion of optimal temporal length in the spatio-temporal prior significantly improved the performance of source reconstruction. More importantly, the µ-STAR model achieved robust performance under various settings (i.e., source numbers/areas, SNR levels, and source depth) with fast convergence speed compared with five widely-used benchmark models (including wMNE, STV, SBL, BESTIES, & SI-STBF). Additional validations on real data were then performed on two publicly-available datasets (including block-design face-processing ERP and continuous resting-state EEG). The reconstructed source activities exhibited spatial and temporal neurophysiologically plausible results consistent with previously-revealed neural substrates, thereby further proving the feasibility of the µ-STAR model for source imaging in various applications.


Subject(s)
Brain Mapping , Electroencephalography , Humans , Bayes Theorem , Brain Mapping/methods , Electroencephalography/methods , Magnetoencephalography/methods , Algorithms , Brain/diagnostic imaging , Brain/physiology
2.
Front Aging Neurosci ; 15: 1193292, 2023.
Article in English | MEDLINE | ID: mdl-37484690

ABSTRACT

Although consistent evidence has revealed that cognitive impairment is a common sequela in patients with mild stroke, few studies have focused on it, nor the impact of lesion location on cognitive function. Evidence on the neural mechanisms underlying the effects of mild stroke and lesion location on cognitive function is limited. This prompted us to conduct a comprehensive and quantitative study of functional brain network properties in mild stroke patients with different lesion locations. Specifically, an empirical approach was introduced in the present work to explore the impact of mild stroke-induced cognitive alterations on functional brain network reorganization during cognitive tasks (i.e., visual and auditory oddball). Electroencephalogram functional connectivity was estimated from three groups (i.e., 40 patients with cortical infarctions, 48 patients with subcortical infarctions, and 50 healthy controls). Using graph theoretical analysis, we quantitatively investigated the topological reorganization of functional brain networks at both global and nodal levels. Results showed that both patient groups had significantly worse behavioral performance on both tasks, with significantly longer reaction times and reduced response accuracy. Furthermore, decreased global and local efficiency were found in both patient groups, indicating a mild stroke-related disruption in information processing efficiency that is independent of lesion location. Regarding the nodal level, both divergent and convergent node strength distribution patterns were revealed between both patient groups, implying that mild stroke with different lesion locations would lead to complex regional alterations during visual and auditory information processing, while certain robust cognitive processes were independent of lesion location. These findings provide some of the first quantitative insights into the complex neural mechanisms of mild stroke-induced cognitive impairment and extend our understanding of underlying alterations in cognition-related brain networks induced by different lesion locations, which may help to promote post-stroke management and rehabilitation.

3.
Front Neurosci ; 17: 1200029, 2023.
Article in English | MEDLINE | ID: mdl-37457005

ABSTRACT

Major depressive disorder (MDD) has been associated with aberrant effective connectivity (EC) among the default mode network (DMN), salience network (SN), and central executive network (CEN)-collectively referred to as triple networks. However, prior research has predominantly concentrated on broad frequency bands (0.01-0.08 Hz or 0.01-0.15 Hz), ignoring the influence of distinct rhythms on triple network causal dynamics. In the present study, we aim to investigate EC alterations within the triple networks across various frequency bands in patients with MDD. Utilizing a data-driven frequency decomposition approach and a multivariate Granger causality analysis, we characterized frequency-specific EC patterns of triple networks in 49 MDD patients and 54 healthy controls. A support vector machine classifier was subsequently employed to assess the discriminative capacity of the frequency-specific EC features. Our findings revealed that, compared to controls, patients exhibited not only enhanced mean EC within the CEN in the conventional frequency band (0.01-0.08 Hz), but also decreased mean EC from the SN to the DMN in a higher frequency band (0.12-0.18 Hz), and increased mean EC from the CEN to the SN in a sub-frequency band (0.04-0.08 Hz); the latter was significantly correlated with disease severity. Moreover, optimal classification performance for distinguishing patients from controls was attained by combining EC features across all three frequency bands, with the area under the curve (AUC) value of 0.8831 and the corresponding accuracy, sensitivity, and specificity of 89.97%, 92.63%, and 87.32%, respectively. These insights into EC changes within the triple networks across multiple frequency bands offer valuable perspectives on the neurobiological basis of MDD and could aid in developing frequency-specific EC features as potential biomarkers for disease diagnosis.

4.
Article in English | MEDLINE | ID: mdl-37022804

ABSTRACT

Visual search is ubiquitous in daily life and has attracted substantial research interest over the past decades. Although accumulating evidence has suggested complex neurocognitive processes underlying visual search, the neural communication across the brain regions remains poorly understood. The present work aimed to fill this gap by investigating functional networks of fixation-related potential (FRP) during the visual search task. Multi-frequency electroencephalogram (EEG) networks were constructed from 70 university students (male/female = 35/35) using FRPs time-locked to target and non-target fixation onsets, which were determined by concurrent eye-tracking data. Then graph theoretical analysis (GTA) and a data-driven classification framework were employed to quantitatively reveal the divergent reorganization between target and non-target FRPs. We found distinct network architectures between target and non-target mainly in the delta and theta bands. More importantly, we achieved a classification accuracy of 92.74% for target and non-target discrimination using both global and nodal network features. In line with the results of GTA, we found that the integration corresponding to target and non-target FRPs significantly differed, while the nodal features contributing most to classification performance primarily resided in the occipital and parietal-temporal areas. Interestingly, we revealed that females exhibited significantly higher local efficiency in delta band when focusing on the search task. In summary, these results provide some of the first quantitative insights into the underlying brain interaction patterns during the visual search process.


Subject(s)
Brain , Electroencephalography , Humans , Male , Female
5.
IEEE Trans Biomed Eng ; 69(5): 1554-1563, 2022 05.
Article in English | MEDLINE | ID: mdl-34582344

ABSTRACT

OBJECTIVE: Brain-computer interfaces (BCI) that enables people with severe motor disabilities to use their brain signals for direct control of objects have attracted increased interest in rehabilitation. To date, no study has investigated feasibility of the BCI framework incorporating both intracortical and scalp signals. METHODS: Concurrent local field potential (LFP) from the hand-knob area and scalp EEG were recorded in a paraplegic patient undergoing a spike-based close-loop neurorehabilitation training. Based upon multimodal spatio-spectral feature extraction and Naïve Bayes classification, we developed, for the first time, a novel LFP-EEG-BCI for motor intention decoding. A transfer learning (TL) approach was employed to further improve the feasibility. The performance of the proposed LFP-EEG-BCI for four-class upper-limb motor intention decoding was assessed. RESULTS: Using a decision fusion strategy, we showed that the LFP-EEG-BCI significantly (p 0.05) outperformed single modal BCI (LFP-BCI and EEG-BCI) in terms of decoding accuracy with the best performance achieved using regularized common spatial pattern features. Interrogation of feature characteristics revealed discriminative spatial and spectral patterns, which may lead to new insights for better understanding of brain dynamics during different motor imagery tasks and promote development of efficient decoding algorithms. Moreover, we showed that similar classification performance could be obtained with few training trials, therefore highlighting the efficacy of TL. CONCLUSION: The present findings demonstrated the superiority of the novel LFP-EEG-BCI in motor intention decoding. SIGNIFICANCE: This work introduced a novel LFP-EEG-BCI that may lead to new directions for developing practical neurorehabilitation systems with high detection accuracy and multi-paradigm feasibility in clinical applications.


Subject(s)
Brain-Computer Interfaces , Neurological Rehabilitation , Algorithms , Bayes Theorem , Electroencephalography , Humans , Imagination
SELECTION OF CITATIONS
SEARCH DETAIL
...