Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(2)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34598172

ABSTRACT

The development of a reliable non-enzymatic multi-analyte biosensor is remained a great challenge for biomedical and industrial applications. In this prospective, rationally designed electrode materials having voltage switchable electrocatalytic properties are highly promising. Here, we report vanadium doped ZnO engineered nanostructures (Zn1-xVxO where 0 ≤ x ≤ 0.1) which exhibit voltage switchable electrocatalytic properties for accurate measurements of glucose and hydrogen peroxide. Microstructures and chemical analysis show that the oxygen vacancies in the material can be tuned by controlling the stoichiometric ratios which play key role for voltage dependent measurements of different analytes. The developed Zn1-xVxO nanostructures exhibit outstanding sensing ability for binary analytes with a high selectivity, low detection limit, thermal stability and long-term stability. The Zn0.9V0.1O/glassy carbon (GC) electrode shows 3-fold increase in reproducible sensitivity for both glucose (655.24µA mM-1cm-2) and H2O2(13309.37µA mM-1cm-2) as compared to the pristine ZnO/GC electrode. Moreover, the electrode also shows good response for human blood serum and commercially available samples. The results demonstrate that defect engineering is a promising route for the development of cost-effective non-enzymatic multi-analyte sensors for practical applications.

2.
Nanoscale ; 13(37): 15711-15720, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34528035

ABSTRACT

The synthesis of one-dimensional heterostructures having high dielectric constant and low dielectric loss has remained a great challenge. Until now, the dielectric performance of ZnO-ZnS heterostructures was scarcely investigated. In this work, large-scale ZnO-ZnS heterostructures were synthesized by employing the chemical vapor deposition method. High resolution transmission electron microscopy (HRTEM) confirms the formation of heterostructures. X-ray photoelectron spectroscopy (XPS) shows that S atoms fill up the oxygen vacancy (VO) in ZnO, leading to the suppression of charge carrier's movement from ZnO to ZnS; instead there is charge transfer from ZnS to ZnO. Conductivity mismatch between adjacent ZnO and ZnS materials leads to the accumulation of free charges at the interface of the heterostructure and can be considered as a capacitor-like structure. The electrical behaviors of the potential phases of ZnO, ZnS and the ZnO-ZnS heterostructure are well interpreted by a best fitted equivalent circuit model. Each heterostructure acts as a polarization node with a specific flip-flop frequency and all such nodes form continuous transmission of polarization, which jointly increase the dielectric energy-storage performance. The orientational polarization of the polarons and Zn2+-VO dipoles present at the heterostructure interface contributes to the frequency stable dielectric constant at ≥103 Hz. Our findings provide a systematic approach to tailor the electronic transport and dielectric properties at the interface of the heterostructure. We suggest that this approach can be extended for improving the energy harvesting, transformation and storage capabilities of the nanostructures for the development of high-performance energy-storage devices.

3.
Nanotechnology ; 32(20): 205501, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33567411

ABSTRACT

The development of a highly sensitive and selective non-enzymatic electrode catalyst for the detection of a target molecule was remained a great challenge. In this regard, bimetallic nanowires (BMNWs) are considered as promising electrode material for their fascinating physical/chemical properties superior to a single system. In this article, nickel cobalt (Ni x -Co) BMNWs with tunable stoichiometry were prepared by a template assisted electrodeposition method and their catalytic performance was investigated for the detection of hydrogen peroxide (H2O2). It has been found that Ni-Co (0.5:1) BMNWs/PC electrode exhibits superior non-enzymatic sensing ability toward H2O2 detection with a high selectivity. The electrode shows fast response within ∼3 s and an excellent reproducible sensitivity of 2211.4 µAmM-1 cm-2, which is the best compared to the individual Ni, Co, Ni-Co (0.3:1) BMNWs and previously reported electrodes. In addition, the electrode shows a linear response in the wide concentration range from 0.005 mM to 9 mM, low detection limit of 0.5 µM (S/N = 3.2) and a relatively long-term storage (50 d). Moreover, the sensor reveals excellent results for H2O2 detection in the real samples. The enhanced sensitivity of the Ni-Co (0.5:1) BMNWs based electrode may be due to the stable structure and synergy of Ni and Co. The results demonstrate that the catalytic activity of the electrode binary catalyst towards H2O2 detection can be improved by adjusting the Ni/Co ratio in BMNWs. The excellent performance of the electrode suggests that Ni-Co BMNWs are promising candidate for the construction of cost-effective electrochemical sensors for medical and industrial applications.

4.
PeerJ ; 7: e7818, 2019.
Article in English | MEDLINE | ID: mdl-31632851

ABSTRACT

The bamboo snout beetle Cyrtotrachelus buqueti is a widely distributed wood-boring pest found in China, and its larvae cause significant economic losses because this beetle targets a wide range of host plants. A potential pest management measure of this beetle involves regulating olfactory chemoreceptors. In the process of olfactory recognition, pheromone-binding proteins (PBPs) play an important role. Homology modeling and molecular docking were conducted in this study for the interaction between CbuqPBP1 and dibutyl phthalate to better understand the relationship between PBP structures and their ligands. Site-directed mutagenesis and binding experiments were combined to identify the binding sites of CbuqPBP1 and to explore its ligand-binding mechanism. The 3D structural model of CbuqPBP1 has six a-helices. Five of these a-helices adopt an antiparallel arrangement to form an internal ligand-binding pocket. When docking dibutyl phthalate within the active site of CbuqPBP1, a CH-π interaction between the benzene ring of dibutyl phthalate and Phe69 was observed, and a weak hydrogen bond formed between the ester carbonyl oxygen and His53. Thus, Phe69 and His53 are predicted to be important residues of CbuqPBP1 involved in ligand recognition. Site-directed mutagenesis and fluorescence assays with a His53Ala CbuqPBP1 mutant showed no affinity toward ligands. Mutation of Phe69 only affected binding of CbuqPBP1 to cedar camphor. Thus, His53 (Between α2 and α3) of CbuqPBP1 appears to be a key binding site residue, and Phe69 (Located at α3) is a very important binding site for particular ligand interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...