Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D1315-D1326, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37870452

ABSTRACT

Human endogenous retroviruses (HERVs), as remnants of ancient exogenous retrovirus infected and integrated into germ cells, comprise ∼8% of the human genome. These HERVs have been implicated in numerous diseases, and extensive research has been conducted to uncover their specific roles. Despite these efforts, a comprehensive source of HERV-disease association still needs to be added. To address this gap, we introduce the HervD Atlas (https://ngdc.cncb.ac.cn/hervd/), an integrated knowledgebase of HERV-disease associations manually curated from all related published literature. In the current version, HervD Atlas collects 60 726 HERV-disease associations from 254 publications (out of 4692 screened literature), covering 21 790 HERVs (21 049 HERV-Terms and 741 HERV-Elements) belonging to six types, 149 diseases and 610 related/affected genes. Notably, an interactive knowledge graph that systematically integrates all the HERV-disease associations and corresponding affected genes into a comprehensive network provides a powerful tool to uncover and deduce the complex interplay between HERVs and diseases. The HervD Atlas also features a user-friendly web interface that allows efficient browsing, searching, and downloading of all association information, research metadata, and annotation information. Overall, the HervD Atlas is an essential resource for comprehensive, up-to-date knowledge on HERV-disease research, potentially facilitating the development of novel HERV-associated diagnostic and therapeutic strategies.


Subject(s)
Endogenous Retroviruses , Knowledge Bases , Virus Diseases , Humans , Virus Diseases/genetics , Virus Diseases/virology , Atlases as Topic , Internet Use
2.
Comput Struct Biotechnol J ; 21: 4675-4682, 2023.
Article in English | MEDLINE | ID: mdl-37841327

ABSTRACT

Cancer cell lines are essential in cancer research, yet accurate authentication of these cell lines can be challenging, particularly for consanguineous cell lines with close genetic similarities. We introduce a new Cancer Cell Line Hunter (CCLHunter) method to tackle this challenge. This approach utilizes the information of single nucleotide polymorphisms, expression profiles, and kindred topology to authenticate 1389 human cancer cell lines accurately. CCLHunter can precisely and efficiently authenticate cell lines from consanguineous lineages and those derived from other tissues of the same individual. Our evaluation results indicate that CCLHunter has a complete accuracy rate of 93.27%, with an accuracy of 89.28% even for consanguineous cell lines, outperforming existing methods. Additionally, we provide convenient access to CCLHunter through standalone software and a web server at https://ngdc.cncb.ac.cn/cclhunter.

3.
Nucleic Acids Res ; 51(D1): D853-D860, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36161321

ABSTRACT

Single-cell studies have delineated cellular diversity and uncovered increasing numbers of previously uncharacterized cell types in complex tissues. Thus, synthesizing growing knowledge of cellular characteristics is critical for dissecting cellular heterogeneity, developmental processes and tumorigenesis at single-cell resolution. Here, we present Cell Taxonomy (https://ngdc.cncb.ac.cn/celltaxonomy), a comprehensive and curated repository of cell types and associated cell markers encompassing a wide range of species, tissues and conditions. Combined with literature curation and data integration, the current version of Cell Taxonomy establishes a well-structured taxonomy for 3,143 cell types and houses a comprehensive collection of 26,613 associated cell markers in 257 conditions and 387 tissues across 34 species. Based on 4,299 publications and single-cell transcriptomic profiles of ∼3.5 million cells, Cell Taxonomy features multifaceted characterization for cell types and cell markers, involving quality assessment of cell markers and cell clusters, cross-species comparison, cell composition of tissues and cellular similarity based on markers. Taken together, Cell Taxonomy represents a fundamentally useful reference to systematically and accurately characterize cell types and thus lays an important foundation for deeply understanding and exploring cellular biology in diverse species.

4.
Nucleic Acids Res ; 51(D1): D767-D776, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36169225

ABSTRACT

Compared with conventional comparative genomics, the recent studies in pan-genomics have provided further insights into species genomic dynamics, taxonomy and identification, pathogenicity and environmental adaptation. To better understand genome characteristics of species of interest and to fully excavate key metabolic and resistant genes and their conservations and variations, here we present ProPan (https://ngdc.cncb.ac.cn/propan), a public database covering 23 archaeal species and 1,481 bacterial species (in a total of 51,882 strains) for comprehensively profiling prokaryotic pan-genome dynamics. By analyzing and integrating these massive datasets, ProPan offers three major aspects for the pan-genome dynamics of the species of interest: 1) the evaluations of various species' characteristics and composition in pan-genome dynamics; 2) the visualization of map association, the functional annotation and presence/absence variation for all contained species' gene clusters; 3) the typical characteristics of the environmental adaptation, including resistance genes prediction of 126 substances (biocide, antimicrobial drug and metal) and evaluation of 31 metabolic cycle processes. Besides, ProPan develops a very user-friendly interface, flexible retrieval and multi-level real-time statistical visualization. Taken together, ProPan will serve as a weighty resource for the studies of prokaryotic pan-genome dynamics, taxonomy and identification as well as environmental adaptation.


Subject(s)
Databases, Genetic , Genome , Prokaryotic Cells , Archaea/genetics , Bacteria/genetics , Genome, Bacterial , Genomics
5.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34402866

ABSTRACT

Genotype imputation is a statistical method for estimating missing genotypes from a denser haplotype reference panel. Existing methods usually performed well on common variants, but they may not be ideal for low-frequency and rare variants. Previous studies showed that the population similarity between study and reference panels is one of the key factors influencing the imputation accuracy. Here, we developed an imputation reference panel reconstruction method (RefRGim) using convolutional neural networks (CNNs), which can generate a study-specified reference panel for each input data based on the genetic similarity of individuals from current study and references. The CNNs were pretrained with single nucleotide polymorphism data from the 1000 Genomes Project. Our evaluations showed that genotype imputation with RefRGim can achieve higher accuracies than original reference panel, especially for low-frequency and rare variants. RefRGim will serve as an efficient reference panel reconstruction method for genotype imputation. RefRGim is freely available via GitHub: https://github.com/shishuo16/RefRGim.


Subject(s)
Computational Biology/methods , Genotype , Genotyping Techniques/methods , Neural Networks, Computer , Software , Algorithms , Databases, Genetic , Deep Learning , Genetics, Population/methods , Genome-Wide Association Study/methods , Humans , Reproducibility of Results , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...