Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202400512, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878218

ABSTRACT

Massive accumulation of postconsumer plastic waste in eco-system has raised growing environmental concerns. Sustainable end-of-life managements of the indispensable plastic are highly demanding and challenging in modern society. To relieve the plastic menace, herein we present a full life cycle sustainable supramolecular bioplastic made from biomass-derived polyelectrolyte (chitosan quaternary ammonium salt, QCS) and natural sodium fatty acid (sodium laurate, SL) through solid-phase molecular self-assembly (SPMSA), by which the QCS-SL complexes, precipitated from mixing the aqueous solutions, self-assemble to form bioplastic film by mildly pressing at room temperature. The QCS-SL bioplastic films display superior hydroplasticity owing to the water-activated molecular rearrangement and electrostatic bond reconstruction, which allows facile self-healing and reprocessing at room temperature to significantly extend the service lifetime of both products and raw materials. With higher water content, the dynamic electrostatic interactions and precipitation-dissolution equilibrium endow the QCS-SL bioplastic films with considerable solubility in water, which is promising to mitigate the plastic accumulation in aquatic environment. Because both QCS and SL are biocompatible and biodegradable, the dissolved QCS-SL films are nontoxic and environmentally friendly. Thus, this novel supramolecular bioplastic is highly sustainable throughout the whole life cycle, which is expected to open a new vista in sustainable plastic materials.

2.
Int J Biol Macromol ; 271(Pt 2): 132375, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759855

ABSTRACT

Anti-counterfeiting in 3D printing has gained significant attention, however, current approaches often fall short of fully capitalizing on the inherent advantages of personalized manufacturing with this technology. Herein, we propose an embedded anti-counterfeiting scheme for additive manufacturing, accompanied by a novel fluorescent encrypted quick response (QR) method. This approach involves the development of a 3D printing filament utilizing poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) bio-composites as the primary filament matrix, with varying quantities of Chlorella powder incorporated. The resulting filament has a good thermal stability near 200 °C and exhibits a distinctive red fluorescence under ultraviolet light, with the emission peak at 677 nm when excited by 415 nm blue light. Fluorescence imaging analysis confirms that the red fluorescence in 3D printed devices containing Chlorella is a result of the chlorophyll and its derivatives fluorescence effect. The fluorescent encrypted QR codes are inconspicuous in daylight but become easily discernible under ultraviolet light. In the cases of recognizable QR codes, the ∆Eab* values all exceed 35, and the LC/LB values deviate significantly from 1. This research delves into the fluorescence characteristics of Chlorella and highlights its applicability in 3D printing, specifically within the realm of product anti-counterfeiting, presenting a groundbreaking approach.


Subject(s)
Chlorella , Polyesters , Printing, Three-Dimensional , Polyesters/chemistry , Chlorella/chemistry , Fluorescence
3.
Mater Horiz ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689529

ABSTRACT

High-power electronic architectures and devices require elastic thermally conductive materials. The use of epoxy resin in thermal management is limited due to its rigidity. Here, based on epoxy vitrimer, flexible polyethylene glycol (PEG) chains are introduced into covalent adaptable networks to construct covalent-noncovalent interpenetrating networks, enabling the elasticity of epoxy resins. Compared to traditional silicone-based thermal interface materials, the newly developed elastic epoxy resin shows the advantages of reprocessability, self-healing, and no small molecule release. Results show that, even after being filled with boron nitride and liquid metal, the material maintains its resilience, reprocessability and self-healing properties. Leveraging these characteristics, the composite can be further processed into thin films through a repeated pressing-rolling technique that facilitates the forced orientation of the fillers. Subsequently, the bulk composites are reconstructed using a film-stacking method. The results indicate that the thermal conductivity of the reconstructed bulk composite reaches 3.66 W m-1 K-1, achieving a 68% increase compared to the composite prepared through blending. Due to the existence of covalent adaptable networks, the inorganic and inorganic components of the composite prepared in this work can be completely separated under mild conditions, realizing closed-loop recycling.

4.
Sci Total Environ ; 934: 173133, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38734091

ABSTRACT

The high use of plastic wraps leads to significant environmental pollution. In this study, the surface structure and microbial community evolution of commercially available plastic wraps [polyethylene (PE), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), and polylactic acid (PLA)] in constructed wetlands (CWs) were investigated. The results indicated that all plastic wraps gradually decreased in molecular weight, crystallinity, melting, and crystallization temperatures, whereas a gradual increase was observed in the surface roughness, polymer dispersity index (PDI), carbonyl index (CI) and Shannon index of microorganisms colonizing the CWs. The aging rate of the plastic wrap was in the order: PLA > PVC > PE > PVDC, at the same site in the CWs, and it was in the order: soil surface > plant roots > subsoil, for the same plastic wrap. The diversity of microorganisms colonizing the same plastic wrap was in the order: plant roots > subsoil > soil surface. The Shannon indices of microorganisms on plastic wraps were lower than those in the soil, indicating that the diversity of microorganisms colonizing plastic wraps is limited. Additionally, the microbial community structure on the plastic surface was co-differentiated by the plastic type, placement position in the CWs, and aging time. Significantly different microbial community structures were found on the PVC and PVDC wrap surfaces, revealing that the chlorine in plastics limits microbial diversity. Unclassified members of Rhizobiaceae and Pseudomonadaceae were the dominant genera on the surface of the plastic wraps, suggesting that they may be the microorganisms involved in plastic degradation processes. The study provides valuable perspectives to facilitate a comprehensive understanding of the migration, fate, and environmental risks associated with microplastics (MPs) in wetlands.


Subject(s)
Microbiota , Plastics , Wetlands , Soil Microbiology , Water Pollutants, Chemical/analysis
5.
Small ; : e2312116, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446107

ABSTRACT

Flexible zinc-ion batteries have garnered significant attention in the realm of wearable technology. However, the instability of hydrogel electrolytes in a wide-temperature range and uncontrollable side reactions of the Zn electrode have become the main problems for practical applications. Herein, N,N-dimethylformamide (DMF) to design a binary solvent (H2 O-DMF) is introduced and combined it with polyacrylamide (PAM) and ZnSO4 to synthesize a hydrogel electrolyte (denoted as PZD). The synergistic effect of DMF and PAM not only guides Zn2+ deposition on Zn(002) crystal plane and isolates H2 O from the Zn anode, but also breaks the hydrogen bonding network between water to improve the wide-temperature range stability of hydrogel electrolytes. Consequently, the symmetric cell utilizing PZD can stably cycle over 5600 h at 0.5 mA cm- 2 @0.5 mAh cm-2 . Furthermore, the Zn//PZD//MnO2 full cell exhibits favorable wide-temperature range adaptability (for 16000 cycles at 3 A g-1 under 25 °C, 750 cycles with 98 mAh g-1 at 0.1 A g-1 under -20 °C) and outstanding mechanical properties (for lighting up the LEDs under conditions of pressure, bending, cutting, and puncture). This work proposes a useful modification for designing a high-performance hydrogel electrolyte, which provides a reference for investigating the practical flexible aqueous batteries.

6.
J Colloid Interface Sci ; 659: 439-448, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38183810

ABSTRACT

In this study, a Co3O4 catalyst is synthesised using the chitosan-assisted sol-gel method, which simultaneously regulates the grain size, Co valence and surface acidity of the catalyst through a chitosan functional group. The complexation of the free -NH2 complex inhibits particle agglomeration; thus, the average particle size of the catalyst decreases from 82 to 31 nm. Concurrently, Raman spectroscopy, hydrogen temperature-programmed reduction, electron paramagnetic resonance spectroscopy and X-ray photoelectron spectroscopy experiments demonstrate that doping with chitosan N sources effectively modulates Co2+ to promote the formation of oxygen vacancies. In addition, water washing after catalyst preparation can considerably improve the low-temperature (below 250 °C) activity of the catalyst and eliminate the side effects of alkali metal on catalyst activity. Moreover, the presence of Brønsted and Lewis acid sites promotes the adsorption of C8H8. Consequently, CS/Co3O4-W presents the highest catalytic oxidation activity for C8H8 at low temperatures (R250 °C = 8.33 µmol g-1 s-1, WHSV = 120,000 mL hr-1∙g-1). In situ DRIFTS and 18O2 isotope experiments demonstrate that the oxidation of the C8H8 reaction is primarily dominated by the Mars-van Krevelen mechanism. Furthermore, CS/Co3O4-W exhibits superior water resistance (1- and 2- vol% H2O), which has the potential to be implemented in industrial applications.

7.
RSC Adv ; 14(2): 1501-1512, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38178810

ABSTRACT

Photocatalysis is widely acknowledged as an efficient and environmentally friendly method for treating dye-contaminated wastewater. However, the utilization of powdered photocatalysts presents significant challenges, including issues related to recyclability and the potential for secondary pollution. Herein, a novel technique based on 3D printing for the synthesizing of iron oxide (Fe2O3) involving chlorella was presented. Initially, chlorella powders were immobilized within acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) substrate plastics using melt extrusion technology. Subsequently, these composite materials were transformed into ABS/TPU/chlorella skeletons (ATCh40), through fused deposition molding (FDM) technology. The integration of Fe2O3 onto the ATCh40 (ATCh40-Fe2O3) skeletons was accomplished by subjecting them to controlled heating in an oil bath. A comprehensive characterization of the synthesized materials confirms the successful growth of Fe2O3 on the surface of 3D skeletons. This strategy effectively addresses the immobilization challenges associated with powdered photocatalysts. In photocatalytic degradation experiments targeting methyl orange (MO), the ATCh40-Fe2O3 skeletons exhibited a remarkable MO removal rate of 91% within 240 min. Under conditions where the pH of MO solution was maintained at 3, and the ATCh40-Fe2O3 skeletons were subjected to a heat treatment in a 150 °C blast drying oven for 2 hours, the degradation rate of MO remained substantial, achieving 90% removal after 6 cycles. In contrast, when the same synthetic procedure was applied to ABS/TPU (AT) skeletons, the resulting product was identified as α-FeOOH. The MO removal rate by the AT-α-FeOOH skeletons was considerably lower, reaching only 49% after 240 min. This research provided a practical approach for the construction of photocatalytic devices through the use of 3D printing technology.

8.
Chemistry ; 30(7): e202303292, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38014866

ABSTRACT

The properties of polyethylene are highly dependent on the variety and quantity of substitutions. Generally, polyethylene can only be fully substituted with fluorine atoms, mainly e. g., polytetrafluoroethylene and nafion, because atomic radius of fluorine atom is small enough. The preparation of fully substituted polyethylene analogues (FSPEA) and their non-traditional intrinsic luminescence (NTIL) are attractive, especially for substitutions with relatively larger atomic radii than a fluorine atom. Here, Barbier polymerization-induced emission (PIE) is demonstrated as a universal method for the molecular design of NTIL type FSPEAs with intriguing aggregation-induced emission (AIE) behaviors. Through Barbier polymerization of diphenyldichloromethane and different peroxyesters in the presence of Mg in one pot, a series of FSPEAs, including polytriphenylethanol (PTPE), polydiphenylfurylethanol (PDPFE), polydiphenylthiophenylethanol (PDPTE) and polydiphenylnaphthylethanol (PDPNE) have been successfully prepared. Further potential applications for explosive detection, artificial light-harvesting system and white phosphor-converted light-emitting diode are investigated. Therefore, this work opens up a new approach for the molecular design of FSPEA with non-conjugated luminescence, which may cause inspirations to different research fields like polyolefin and luminescent materials.

9.
ACS Nano ; 17(22): 23181-23193, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37956093

ABSTRACT

The violent side reactions of Zn metal in aqueous electrolyte lead to sharp local-pH fluctuations at the interface, which accelerate Zn anode breakdown; thus, the development of an optimization strategy to accommodate a wide pH range is particularly critical for improving aqueous Zn metal batteries. Herein, we report a pH-adaptive electric double layer (EDL) tuned by glycine (Gly) additive with pH-dependent ionization, which exhibits excellent capability to stabilize Zn anodes in wide-pH aqueous electrolytes. It is discovered that a Gly-ionic EDL facilitates the directed migration of charge carriers in both mildly acidic and alkaline electrolytes, leading to the successful suppression of local saturation. It is worth mentioning that the regulation effect of the additive concentration on the inner Helmholtz plane (IHP) structure of Zn electrodes is clarified in depth. It is revealed that the Gly additives without dimerization can develop orderly and dense vertical adsorption within the IHP to effectively reduce the EDL repulsive force of Zn2+ and isolate H2O from the anode surface. Consequently, they Zn anode with tunable EDL exhibits superior electrochemical performance in a wide range of pH and temperature, involving the prodigious cycle reversibility of 7000 h at Zn symmetric cells with ZnSO4-Gly electrolytes and an extended lifespan of 50 times in Zn symmetric cells with KOH-Gly electrolytes. Moreover, acidic Zn powder||MnO2 pouch cells, and alkaline high-voltage Zn||Ni0.8Co0.1Mn0.1O2 cells, and Zn||NiCo-LDH cells also deliver excellent cycling reversibility. The tunable EDL enables the ultrahigh depth of discharge (DOD) of 93%. This work elucidates the design of electrolyte additives compatible in a wide range of pH and temperature, which might cause inspiration in the fields of practical multiapplication scenarios for Zn anodes.

10.
Nanoscale ; 15(35): 14584-14594, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37610823

ABSTRACT

Photocatalytic oxidation of toluene to valuable fine chemicals is of great significance, yet faces challenges in the development of advanced catalysts with both high activity and selectivity for the activation of inert C(sp3)-H bonds. Halide perovskites with remarkable optoelectronic properties have shown to be prospective photoactive materials, but the bulky structure with a small surface area and severe recombination of photogenerated electron-hole pairs are obstacles to application. Here, we fabricate a hierarchical nanoflower-shaped CsPbBr3/TiO2 heterojunction by assembling CsPbBr3 nanoparticles on 2D TiO2 nanoflake subunits. The design significantly downsizes the size of CsPbBr3 from micrometers to nanometers, and forms a type II heterojunction with intimate interfacial contact between CsPbBr3 and TiO2 nanoflakes, thereby accelerating the separation and transfer of photogenerated charges. Moreover, the formed hierarchical heterojunction increaseslight absorption by refraction and scattering, offers a large surface area and enhances the adsorption of toluene molecules. Consequently, the optimized CsPbBr3/TiO2 exhibits a high performance (10 200 µmol g-1 h-1) for photocatalytic toluene oxidation with high selectivity (85%) for benzaldehyde generation under visible light. The photoactivity is about 20 times higher than that of blank CsPbBr3, and is among the best photocatalytic performances reported for selective oxidation of toluene under visible light irradiation.

11.
Sci Total Environ ; 904: 166480, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37611697

ABSTRACT

Microplastics (MPs) are emerging contaminants with growing concerns due to their potential adverse effects on the environment. However, understanding the aging properties and adsorption behavior of MPs is still limited. In this study, we investigated the correlation between the adsorption capacity, aging stages, and aging properties of polyethylene MPs using a correlation equation. Our results revealed that the trends of O/C ratio and contact angle of polyethylene MPs with aging time were fitted to be linear under xenon lamp accelerated aging conditions. Conversely, the trends of other properties such as particle size, crystallinity, and molecular weight with time were fitted to conform to the Boltzmann equation. Moreover, the aging curve data for carbonyl index and molecular weight (Mw) perfectly matched, confirming Mw play a crucial role in verifying the aging process. Additionally, the adsorption amount of polyethylene MPs increased sharply with the increase of aging ages, reaching up to 1.850 mg/g. The adsorption data fit well to the pseudo-second-order kinetics and Langmuir model, suggesting that the adsorption process is dominated by chemisorption. The low pH and low salt concentration is beneficial to the adsorption capacity of MPs onto Cr(VI). Further, a relationship equation was established to predict adsorption risk at different aging stages. These findings provide new insights into the impact of aging on pollutants transport and the fate of MPs, enabling the prediction of adsorption risk of MPs at different aging stages in water environments.

12.
ACS Appl Mater Interfaces ; 15(30): 36312-36323, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37486250

ABSTRACT

Developing visible-light-driven photocatalysts for the catalytic dehydrogenation of organics is of great significance for sustainable solar energy utilization. Here, we first report that aromatic alcohols could be efficiently split into H2 and aldehydes over TiO2 under visible-light irradiation through a ligand-to-metal charge transfer (LMCT) mechanism. A series of TiO2 catalysts with different surface contents of the hydroxyl group (-OH) have been synthesized by controlling the hydrothermal and calcination synthesis methods. An optimal H2 production rate of 18.6 µmol h-1 is obtained on TiO2 synthesized from the hydrothermal method with a high content of surface -OH. Experimental characterizations and comparison studies reveal that the surface -OH markedly influences the formation of LMCT complexes and thus changes the visible-light-driven photocatalytic performance. This work is anticipated to inspire further research endeavors in the design and fabrication of visible-light-driven photocatalyst systems based on the LMCT mechanism to realize the simultaneous synthesis of clean fuel and fine chemicals.

13.
Nat Commun ; 14(1): 4183, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443144

ABSTRACT

The synchronous harvesting and conversion of multiple renewable energy sources for chemical fuel production and environmental remediation in a single system is a holy grail in sustainable energy technologies. However, it is challenging to develop advanced energy harvesters that satisfy different working mechanisms. Here, we theoretically and experimentally disclose the use of MXene materials as versatile catalysts for multi-energy utilization. Ti3C2TX MXene shows remarkable catalytic performance for organic pollutant decomposition and H2 production. It outperforms most reported catalysts under the stimulation of light, thermal, and mechanical energy. Moreover, the synergistic effects of piezo-thermal and piezo-photothermal catalysis further improve the performance when using Ti3C2TX. A mechanistic study reveals that hydroxyl and superoxide radicals are produced on the Ti3C2TX under diverse energy stimulation. Furthermore, similar multi-functionality is realized in Ti2CTX, V2CTX, and Nb2CTX MXene materials. This work is anticipated to open a new avenue for multisource renewable energy harvesting using MXene materials.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Catalysis , Renewable Energy
14.
Mar Pollut Bull ; 193: 114996, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301614

ABSTRACT

Biodegradable plastics (BPs) are a suitable alternative to conventional plastics. Still, their excessive or unplanned use may disrupt the abundance and community structure of the microbial population. To this end, a 58-day experiment in which biodegradable plastic objects, such as bags and boxes, were exposed to near-coastal seawater was conducted. They also assessed how they affected the diversity and organization of bacterial populations in seawater and on the surface of BPs products. It is evident that after the exposure time, both BP's bag and box products deteriorate in the ocean to varying degrees. The results of high-throughput sequencing of bacterial communities in seawater and those colonized on BPs products reveal significant differences in microbial community structures between seawater and BPs plastic samples. These suggest that the degradation of biodegradable plastics is shadowed by microorganisms and exposure time, while BP products influence the structural characteristics of microbial communities.


Subject(s)
Biodegradable Plastics , Plastics , Plastics/chemistry , Seawater/microbiology , Biofilms , Bacteria
15.
ACS Appl Mater Interfaces ; 15(27): 32404-32415, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37368238

ABSTRACT

In the oxidation reaction of volatile organic compounds catalyzed by metal oxides, distinguishing the role of active metal sites and oxygen mobility at specific preferentially exposed crystal planes and diverse temperatures is challenging. Herein, Co3O4 catalysts with four different preferentially exposed crystal planes [(220), (222), (311), and (422)] and oxygen vacancy formation energies were synthesized and evaluated in styrene complete oxidation. It is demonstrated that the Co3O4 sheet (Co3O4-I) presents the highest C8H8 catalytic oxidation activity (R250 °C = 8.26 µmol g-1 s-1 and WHSV = 120,000 mL h-1 g-1). Density functional theory studies reveal that it is difficult for the (311) and (222) crystal planes to form oxygen vacancies, but the (222) crystal plane is the most favorable for C8H8 adsorption regardless of the presence of oxygen vacancies. The combined analysis of temperature-programmed desorption and temperature-programmed surface reaction of C8H8 proves that Co3O4-I possesses the best C8H8 oxidation ability. It is proposed that specific surface area is vital at low temperature (below 250 °C) because it is related to the amount of surface-adsorbed oxygen species and low-temperature reducibility, while the ratio of surface Co3+/Co2+ plays a decisive role at higher temperature because of facile lattice oxygen mobility. In situ diffuse reflectance infrared Fourier spectroscopy and the 18O2 isotope experiment demonstrate that C8H8 oxidation over Co3O4-I, Co3O4-S, Co3O4-C, and Co3O4-F is mainly dominated by the Mars-van Krevelen mechanism. Furthermore, Co3O4-I shows superior thermal stability (57 h) and water resistance (1, 3, and 5 vol % H2O), which has the potential to be conducted in the actual industrial application.

16.
Small ; 19(30): e2300688, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37029578

ABSTRACT

The creation of anisotropic nanostructures with precise size control is desirable for new properties and functions, but it is challenging for ionic self-assembly (ISA) because of the non-directional electrostatic interactions. Herein, the formation of size-controllable tetragonal nanoprisms is reported via crystallization-directed ionic self-assembly (CDISA) through evaporating a micellar solution on solid substrates. First, ISA is designed with a crystalline polyethylene oxide (PEO) containing cationic polymer poly(2-(2-guanidinoethoxy)ethyl methacrylate)-b-poly(ethyleneoxide)-b-poly(2-(2-guanidinoethoxy)-ethylmethacrylate) (PGn -PEO230 -PGn ) and an anionic 5,10,15,20-Tetrakis(4-sulfonatophenyl) porphyrin (TPPS) to form micelles in aqueous solution. The PG segments binds excessive TPPS with amplenet chargeto form hydrophilic corona, while the PEO segments are unprecedentedly dehydrated and tightly packed into cores. Upon naturally drying the micellar solution on a silicon wafer, PEO crystallizationdirects the micelles to aggregate into square nanoplates, which are further connected to nanoprisms. Length and width of the nanoprisms can be facilely tuned by varying the initial concentration. In this hierarchical process, the aqueous self-assembly is prerequisite and the water evaporation rate is crucial for the formation of nanostructures, which provides multiple factors for morphology regulating. Such precise size-control strategy is highly expected to provide a new vision for the design of advanced materials with size controllable anisotropic nanostructures.

17.
J Colloid Interface Sci ; 640: 487-497, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36871513

ABSTRACT

Rechargeable aqueous zinc-ion batteries have great promise for becoming next-generation storage systems, although the irreversible intercalation of Zn2+ and sluggish reaction kinetics impede their wide application. Therefore, it is urgent to develop highly reversible zinc-ion batteries. In this work, we modulate the morphology of vanadium nitride (VN) with different molar amounts of cetyltrimethylammonium bromide (CTAB). The optimal electrode has porous architecture and excellent electrical conductivity, which can alleviate volume expansion/contraction and allow for fast ion transmission during the Zn2+ storage process. Furthermore, the CTAB-modified VN cathode undergoes a phase transition that provides a better framework for vanadium oxide (VOx). With the same mass of VN and VOx, VN provides more active material after phase conversion due to the molar mass of the N atom being less than that of the O atom, thus increasing the capacity. As expected, the cathode displays an excellent electrochemical performance of 272 mAh g-1 at 5 A g-1, high cycling stability up to 7000 cycles, and excellent performance over a wide temperature range. This discovery creates new possibilities for the development of high-performance multivalent ion aqueous cathodes with rapid reaction mechanisms.

18.
Adv Mater ; 35(8): e2207688, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36373548

ABSTRACT

Supramolecular materials with room-temperature healability and recyclability are highly desired because they can extend materials lifetimes and reduce resources consumption. Most approaches toward healing and recycling rely on the dynamically reversible supramolecular interactions, such as hydrogen, ionic and coordinate bonds, which are hygroscopic and vulnerable to water. The general water-induced plasticization facilitates the healing and reprocessing process but cause a troubling problem of random self-adhesion. To address this issue, here it is reported that by modifying the hygroscopic surfaces with hydrophobic alkyl chains of dodecyltrimethoxysilane (DTMS), supramolecular plastic films based on commercial raw materials of sodium alginate (SA) and cetyltrimethylammonium bromide (CTAB) display extraordinary damage-specific healability. Owing to the hydrophobic surfaces, random self-adhesion is eliminated even under humid environment. When damage occurs, the fresh surfaces with ionic groups and hydroxyl groups expose exclusively at the damaged site. Thus, damage-specific healing can be readily facilitated by water-induced plasticization. Moreover, the films display excellent room-temperature recyclability. After multiple times of reprocessing and re-modifying with DTMS, the rejuvenated films exhibit fatigueless mechanical properties. It is anticipated that this approach to damage-specific healing and room-temperature recycling based on surface hydrophobization can be applied to design various of supramolecular plastic polysaccharides materials for building sustainable societies.

19.
Front Chem ; 10: 987619, 2022.
Article in English | MEDLINE | ID: mdl-36531318

ABSTRACT

Immobilization is considered as a promising strategy toward the practical applications of powdered adsorbent. Herein, three dimensional (3D) printing cylindrical capsules with cross-linked PVA hydrogels membrane in encapsulate Chlorella pyrenoidosa (Cp) were utilized for removal of lead ions. The chemical compositions, hydrogels performance and morphologies of the membranes were determined by Fourier transformed infrared spectroscopy (FTIR), cross-linking degree, swelling degree, membrane flux and scanning electron microscopy (SEM). It is found that PVA cross-linking structure is successfully synthesized on the surface of capsule body and cap due to the presence of PVA in the filament. The lead ions adsorption capacity related to initial concentration of 50 mg/L in 48 h is reached 75.61%, revealing a good removal ability. The self-floating 3D printed capsules device also shows an excellent recovering property. After 7 runs of adsorption experiment, the lead ions adsorption ratio remains 78.56%, which will bring a broad prospect in wastewater treatment, chemical slow release along with sample preparation and separation.

20.
Membranes (Basel) ; 12(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36363671

ABSTRACT

Struvite crystallization is a successful technique for simultaneously recovering PO43- and NH4+ from wastewater. However, recovering PO43- and NH4+ from low-concentration solutions is challenging. In this study, PO43-, NH4+, and NO3- were separated and concentrated from wastewater using bipolar membrane electrodialysis, PO43- and NH4+ can then be recovered as struvite. The separation and concentration of PO43- and NH4+ are clearly impacted by current density, according to experimental findings. The extent of separation and migration rate increased with increasing current density. The chemical oxygen demand of the feedwater has no discernible impact on the separation and recovery of ions. The migration of PO43-, NH4+, and NO3- fits zero-order migration kinetics. The concentrated concentration of NH4+ and PO43- reached 805 mg/L and 339 mg/L, respectively, which demonstrates that BMED is capable of effectively concentrating and separating PO43- and NH4+. Therefore, BMED can be considered as a pretreatment method for recovering PO43- and NH4+ in the form of struvite from wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...