Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatology ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38899975

ABSTRACT

BACKGROUND AND AIMS: Liver HCC is the second leading cause of cancer-related deaths worldwide. The heterogeneity of this malignancy is driven by a wide range of genetic alterations, leading to a lack of effective therapeutic options. In this study, we conducted a systematic multi-omics characterization of HCC to uncover its metabolic reprogramming signature. APPROACH AND RESULTS: Through a comprehensive analysis incorporating transcriptomic, metabolomic, and lipidomic investigations, we identified significant changes in metabolic pathways related to glucose flux, lipid oxidation and degradation, and de novo lipogenesis in HCC. The lipidomic analysis revealed abnormal alterations in glycerol-lipids, phosphatidylcholine, and sphingolipid derivatives. Machine-learning techniques identified a panel of genes associated with lipid metabolism as common biomarkers for HCC across different etiologies. Our findings suggest that targeting phosphatidylcholine with saturated fatty acids and long-chain sphingolipid biosynthesis pathways, particularly by inhibiting lysophosphatidylcholine acyltransferase 1 ( LPCAT1 ) and ceramide synthase 5 ( CERS5 ) as potential therapeutic strategies for HCC in vivo and in vitro. Notably, our data revealed an oncogenic role of CERS5 in promoting tumor progression through lipophagy. CONCLUSIONS: In conclusion, our study elucidates the metabolic reprogramming nature of lipid metabolism in HCC, identifies prognostic markers and therapeutic targets, and highlights potential metabolism-related targets for therapeutic intervention in HCC.

2.
Tissue Cell ; 78: 101867, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35908351

ABSTRACT

Pancreatic cancer (PC) is the seventh-leading cause of cancer-related mortality, and is associated with limited therapeutic options and poor prognosis. The extracellular matrix (ECM) represents the main component of the tumor microenvironment. Studies have found controversial roles of osteoglycin (OGN), a classical small leucine-rich proteoglycan found in the ECM in human malignancies; however, the significance of OGN in PC has not been determined. Here, the expression profiles of OGN in PC tissues and cell lines were evaluated by Gene Expression Profiling Interactive Analysis (GEPIA) database, immunohistochemistry, western blot, and quantitative PCR. OGN was found to be significantly upregulated in PC tissues and cell lines. Moreover, the expression of OGN was observed to be closely associated with TNM stage, stage III showed a higher OGN expression than that of stages I and II. Survival analysis showed that patients with PC showing high levels of OGN had low survival rates. The effects of OGN on cell proliferation and apoptosis were analyzed using MTT, CCK8, EdU and TUNEL assays. Wound-healing and invasion assays were conducted to test migratory and invasive abilities. Overexpression of OGN was demonstrated to promote proliferation, migration, and invasion, and inhibit apoptosis of PC cells. Further experiments revealed that inhibitor of DNA binding 4 (ID4) was upregulated by OGN. Silencing ID4 by small interfering RNA was shown to partially reverse the tumor-promoting effect of OGN. Collectively, our preliminary results indicate that the elevated expression of OGN may be associated with PC progression and may serve as a potential biomarker for the diagnosis and prognosis of PC. Targeting of OGN/ID4 axis may be a promising strategy in PC therapy.


Subject(s)
Intercellular Signaling Peptides and Proteins , Pancreatic Neoplasms , Cell Transformation, Neoplastic , DNA , Humans , Inhibitor of Differentiation Proteins , Pancreatic Neoplasms/genetics , RNA, Small Interfering , Small Leucine-Rich Proteoglycans , Tumor Microenvironment/genetics , Pancreatic Neoplasms
3.
J Pharm Biomed Anal ; 205: 114339, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34464868

ABSTRACT

This study was designed to explore the sulfation patterns of chondroitin sulfate (CS)/dermatan sulfate (DS), and keratan sulfate (KS) and the expression of carbohydrate sulfotransferases (CHSTs) in 26 pancreatic tumor and normal tissues. CS/DS and KS profiles were simultaneously determined. Pancreatic tumor tissues exhibited increased ΔDi-0S, ΔDi-4S, and ΔDi-6S levels, with absolute ΔDi-4S content being highest, followed by ΔDi-6S. However, as for the contents of KS-6S and KS-6S,6'S, there were no significant regular change. The expression levels of CHST1 and CHST4 were 37 and 15 times higher than those in normal tissues. PCA and OPLS-DA revealed that ΔDi-4S and ΔDi-6S levels could be reliably used to differentiate between healthy and cancerous tissues. The up-regulation of CHST3, CHST12, CHST13, and CHST15 was directly correlated with C-4 and C-6 sulfation. These data provide a foundation for future studies of the role of ΔDi-4S and ΔDi-6S in the progression of pancreatic cancer.


Subject(s)
Keratan Sulfate , Pancreatic Neoplasms , Chondroitin Sulfates , Dermatan Sulfate , Humans , Membrane Glycoproteins , Sulfates , Sulfotransferases/genetics
4.
Biomed Pharmacother ; 98: 577-584, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29288973

ABSTRACT

LncRNA RGMB-AS1 has been suggested to play significant roles in lung cancer progression. However, it remains unknown whether lncRNA RGMB-AS1 is involved in the development and progression of hepatocellular carcinoma. In our results, lncRNA RGMB-AS1 was low-expressed in hepatocellular carcinoma tissues and cell lines, and associated with clinical stage, tumor size and metastasis. Survival analysis indicated that lncRNA RGMB-AS1 high was an independent favorable prognostic factor for hepatocellular carcinoma patients. Gain-of-function studies showed up-regulated lncRNA RGMB-AS1 expression suppressed hepatocellular carcinoma cells proliferation, migration and invasion, and promoted cells apoptosis. There was a positively association between lncRNA RGMB-AS1 and RGMB in hepatocellular carcinoma tissues, and up-regulated lncRNA RGMB-AS1 expression increased RGMB mRNA and protein expressions in hepatocellular carcinoma cells. In conclusion, lncRNA RGMB-AS1 serves an anti-oncogenic role in hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Hep G2 Cells , Humans , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Male , Middle Aged , Prognosis , RNA, Messenger/genetics , Up-Regulation/genetics
5.
Magn Reson Imaging ; 32(8): 1037-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24985566

ABSTRACT

Due to the homology between retinal and cerebral microvasculatures, retinopathy is a putative indicator of cerebrovascular dysfunction. This study aimed to detect metabolite changes of brain tissue in type 2 diabetes mellitus (T2DM) patients with diabetic retinopathy (DR) using proton magnetic resonance spectroscopy ((1)H-MRS). Twenty-nine T2DM patients with DR (DR group), thirty T2DM patients without DR (DM group) and thirty normal controls (NC group) were involved in this study. Single-voxel (1)H-MRS (TR: 2000ms, TE: 30ms) was performed at 3.0T MRI/MRS imager in cerebral left frontal white matter, left lenticular nucleus, and left optic radiation. Our data showed that NAA/Cr ratios of the DR group were significantly lower than those of the DM group in the frontal white matter and optic radiation. In the lenticular nucleus, MI/Cr ratios were significantly higher in the DM group than those in the NC group, while MI/Cr ratios were significantly lower in the DR group than those in the DM group. In the frontal white matter, NAA/Cho ratios were found to be decreased in the DR group as compared to the NC group. Additionally, our finding indicated that NAA/Cr ratios were negatively associated with DR severity in both the frontal white matter and optic radiation. A decrease in NAA indicated neuronal loss and the likely explanation for a decrease in MI was glial loss. In conclusion, we inferred that cerebral neurons and glia cells were damaged in patients with DR. Our data support that DR is associated with brain tissue damage.


Subject(s)
Brain/metabolism , Brain/pathology , Diabetic Retinopathy/pathology , Proton Magnetic Resonance Spectroscopy/methods , Adult , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Case-Control Studies , Choline/chemistry , Corpus Striatum/pathology , Diabetes Mellitus, Type 2/pathology , Diagnostic Techniques, Ophthalmological , Female , Humans , Inositol/metabolism , Male , Neuroglia/pathology , Neurons/pathology , Reproducibility of Results , Retina/pathology , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...