Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38330562

ABSTRACT

Objective: This study investigates the efficacy of tangerine peel lemon glycerin extract oral spray in improving oral mucosal barrier, reducing microinflammation, and addressing malnutrition in maintenance dialysis (MHD) patients. Methods: Tangerine peel and dry lemon underwent glycerin extraction. From January 2021 to June 2022, 72 MHD patients with thirst were prospectively chosen at Sinopharm Gezhouba Central Hospital. Randomization divided them into an observation group (n=36) and a control group (n=36). Both received routine maintenance dialysis and chronic kidney disease management. Oral conditions were assessed using OHIP-14, a homemade visual thirst score scale, SFR, sAA, and saliva pH. Microinflammatory indexes (CRP, TNF-α, IL-6) and nutritional status indicators (Alb, PA, Hb) were measured. The observation group used 1ml of tangerine peel lemon glycerin extract with a pH value of 5.9~6.1 q6h, while the control group used 1ml of purified water q6h. Results: After 3 months, the observation group showed significant improvement in OHIP-14 and visual thirst score scale (P < .01). Saliva pH, CRP, TNF-α, and IL-6 levels decreased, and SAA activity, SFR, Alb, PA, and Hb levels increased significantly in the observation group compared to the control group (P < .01). Conclusions: Tangerine peel lemon glycerin spray demonstrates promise in improving the oral mucosal barrier, exhibiting antibacterial and anti-inflammatory properties that mitigate microinflammation and malnutrition. This finding suggests a connection between oral health, systemic pathology, psychological state, and social adaptability.

2.
Opt Express ; 31(18): 29975-29985, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37710786

ABSTRACT

Ultrafast microchannel plate (MCP) photomultiplier tubes are under active development. To obtain high gain, high spatial resolution, and good time performance, we comprehensively investigate the effects of the gap distances and voltages from cathode to MCPin and MCPout to anode in a systematic study using the finite integral technique and Monte Carlo method. A three-dimensional model is introduced to simplify the calculations. From the simulation results, a short gap distance and high gap voltage were determined to achieve good time performance, high spatial resolution, and high gain.

3.
ACS Appl Mater Interfaces ; 15(39): 46226-46235, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37738374

ABSTRACT

Much can be learned from the research and development of scintillator crystals for improving the scintillation performance of glasses. Relying on the concept of "embedding crystalline order in glass", we have demonstrated that the scintillation properties of Ce3+-doped nanoglass composites (nano-GCs) can be optimized via the synergistic effects of Gd3+-sublattice sensitization and band-gap engineering. The nano-GCs host a large volume fraction of KYxGd1-xF4 mixed-type fluoride nanocrystals (NCs) and still retain reasonably good transparency at Ce3+-emitting wavelengths. The light yield of 3455 ± 20 ph/MeV is found, which is the largest value ever reported in fluoride NC-embedded nano-GCs. A comprehensive study is given on the highly selective doping of Ce3+ in the NCs and its positive effect on the scintillation properties. The favorable influence of the Y3+/Gd3+ mixing on the suppression of defects is accounted for by density functional theory and borne out experimentally. As a proof-of-concept, X-ray imaging with a good spatial resolution (7.9 lp/mm) is demonstrated by employing Ce3+-doped nano-GCs. The superior radiation hardness, repeatability, and thermal stability of the designed scintillators bode well for their long-term practical applications.

4.
Innovation (Camb) ; 2(4): 100179, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34877560

ABSTRACT

Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.

5.
Microb Cell Fact ; 20(1): 113, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34098969

ABSTRACT

BACKGROUND: Menaquinone (MK-7) is a highly valuable vitamin K2 produced by Bacillus subtilis. Common static metabolic engineering approaches for promoting the production of MK-7 have been studied previously. However, these approaches caused an accumulation of toxic substances and reduced product yield. Hence, dynamic regulation by the quorum sensing (QS) system is a promising method for achieving a balance between product synthesis and cell growth. RESULTS: In this study, the QS transcriptional regulator SinR, which plays a significant role in biofilm formation and MK production simultaneously, was selected, and its site-directed mutants were constructed. Among these mutants, sinR knock out strain (KO-SinR) increased the biofilm biomass by 2.8-fold compared to the wild-type. SinRquad maximized the yield of MK-7 (102.56 ± 2.84 mg/L). To decipher the mechanism of how this mutant regulates MK-7 synthesis and to find additional potential regulators that enhance MK-7 synthesis, RNA-seq was used to analyze expression changes in the QS system, biofilm formation, and MK-7 synthesis pathway. The results showed that the expressions of tapA, tasA and epsE were up-regulated 9.79-, 0.95-, and 4.42-fold, respectively. Therefore, SinRquad formed more wrinkly and smoother biofilms than BS168. The upregulated expressions of glpF, glpk, and glpD in this biofilm morphology facilitated the flow of glycerol through the biofilm. In addition, NADH dehydrogenases especially sdhA, sdhB, sdhC and glpD, increased 1.01-, 3.93-, 1.87-, and 1.11-fold, respectively. The increased expression levels of NADH dehydrogenases indicated that more electrons were produced for the electron transport system. Electrical hyperpolarization stimulated the synthesis of the electron transport chain components, such as cytochrome c and MK, to ensure the efficiency of electron transfer. Wrinkly and smooth biofilms formed a network of interconnected channels with a low resistance to liquid flow, which was beneficial for the uptake of glycerol, and facilitated the metabolic flux of four modules of the MK-7 synthesis pathway. CONCLUSIONS: In this study, we report for the first time that SinRquad has significant effects on MK-7 synthesis by forming wrinkly and smooth biofilms, upregulating the expression level of most NADH dehydrogenases, and providing higher membrane potential to stimulate the accumulation of the components in the electron transport system.


Subject(s)
Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Vitamin K 2/metabolism , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Biofilms/growth & development , Bioreactors , Biosynthetic Pathways , Gene Expression Regulation, Bacterial , Gene Knockout Techniques/methods , Membrane Potentials , Metabolic Engineering , Models, Molecular , Mutagenesis, Site-Directed , NAD/metabolism , Protein Conformation , Quorum Sensing , RNA, Bacterial , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Sensors (Basel) ; 18(9)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30200475

ABSTRACT

Three-dimensional (3D) printing technology has been greatly developed in the last decade and gradually applied in the construction, medical, and manufacturing industries. However, limited workspace and accuracy restrict the development of 3D printing technology. Due to the extension range and flexibility of cables, cable-driven parallel robots can be applied in challenging tasks that require motion with large reachable workspace and better flexibility. In this paper, a cable-driven parallel robot for 3D Printing is developed to obtain larger workspace rather than traditional 3D printing devices. A kinematic calibration method is proposed based on cable length residuals. On the basis of the kinematic model of the cable-driven parallel robot for 3D Printing, the mapping model is established among geometric structure errors, zero errors of the cable length, and end-effector position errors. In order to improve the efficiency of calibration measurement, an optimal scheme for measurement positions is proposed. The accuracy and efficiency of the kinematics calibration method are verified through numerical simulation. The calibration experiment based on the motion capture system indicates that the position error of end-effector is decreased to 0.6157 mm after calibration. In addition, the proposed calibration method is effective and verified for measurement positions outside optimal positions set through experiments.

7.
Sci Rep ; 7(1): 952, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28424487

ABSTRACT

Large core optical multimode fiber provides benefits such as a large light-coupling tolerance, easy handling, and delivery of higher light power without undesirable nonlinear effects. In this research, we exploit the effects of external perturbation on the power flow within the large core fiber and present two relevant applications, namely a perturbation sensor and a doughnut beam tuner. Since conventional multimode fiber power flow model does not take into consideration the perturbation effect, we modify the power flow model so that the influence of time varying perturbation can be theoretically analyzed. Based on our theory, we further conduct the numerical simulation and experiments on these two applications. For the fiber vibration sensor, the proposed numerical model shows that the sensor sensitivity depends on the intensity profile of the launched beam and also the higher-order harmonics that were not reported previously can become interferences to affect the signal. For the beam tuner application, we prove both theoretically and experimentally that the doughnut intensity profile at the fiber output can be tuned in real-time by applying external perturbations to the fiber. We expect that the results can be useful to further exploit the external perturbation on large core fiber in various applications.

8.
Opt Express ; 24(10): 10829-40, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409903

ABSTRACT

We present a detailed theoretical and experimental study on the sensitivity enhancement for multimode fiber (MMF) speckle sensor. Using mode coupling theory, we derive an expression showing that the sensitivity of the MMF speckle sensor depends on the intensity profile of the MMF modes. Particularly, we use our theory to study the influence of the spatial filtering window on the sensitivity, and the experimental results have found a good agreement with the theory. Our results suggest that the sensitivity of an MMF speckle sensor can be greatly enhanced by adjusting the size and location of the spatial filtering window. An 80-fold improvement on sensitivity was achieved in our experiment, as compared with the conventional MMF speckle sensor with the filtering window placed at the center of the speckle field.

9.
Gene ; 576(2 Pt 2): 763-9, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26548815

ABSTRACT

Transparent Testa 12 (TT12) is a kind of transmembrane transporter of proanthocyanidins (PAs), which belongs to a membrane-localized multidrug and toxin efflux (MATE) family, but the molecular basis of PAs transport is still poorly understood. Here, we cloned a full-length TT12 cDNA from the fiber of brown cotton (Gossypium hirsutum), named GhTT12 (GenBank accession No. KF240564), which comprised 1733 bp with an open reading frame (ORF) of 1503 bp and encoded a putative protein containing 500 amino acid residues with a typical MATE conserved domain. The GhTT12 gene had 96.8% similarity to AA genome in Gossypium arboretum. Quantitative RT-PCR analysis denoted that the relative expression of GhTT12 in brown cotton was 1-5 folds higher than that in white cotton. The mRNA level was the highest at 5 days post anthesis (DPA) and reduced gradually during the fiber development. Expressing GhTT12-fused green fluorescent protein (GFP) in Nicotiana tabacum showed that GhTT12-GFP was localized in the vacuole membrane. The content of PAs increased firstly and decreased afterwards, and reached the maximum at 15 DPA in brown cotton. But for white cotton, the content of PAs remained at a low level during the fiber development. We speculate that GhTT12 may participate in the transportation of PAs from the cytoplasmic matrix to the vacuole. Taken together, our data revealed that GhTT12 was functional as a PAs transmembrane transporter.


Subject(s)
Gene Expression Regulation, Plant , Gossypium/genetics , Plant Proteins/metabolism , Amino Acid Sequence , Cloning, Molecular , Cotton Fiber , Gene Expression Profiling , Genes, Plant , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Proanthocyanidins/metabolism , Protein Transport , Sequence Alignment , Sequence Homology, Amino Acid , Subcellular Fractions/metabolism
10.
Sci Rep ; 5: 10115, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25960268

ABSTRACT

The His-x-Asp (HxD) motif is one of the most conserved structural components of the catalytic core of protein kinases; however, the functional role of the conserved histidine is unclear. Here we report that replacement of the HxD-histidine with Arginine or Phenylalanine in Aurora A abolishes both the catalytic activity and auto-phosphorylation, whereas the Histidine-to-tyrosine impairs the catalytic activity without affecting its auto-phosphorylation. Comparisons of the crystal structures of wild-type (WT) and mutant Aurora A demonstrate that the impairment of the kinase activity is accounted for by (1) disruption of the regulatory spine in the His-to-Arg mutant, and (2) change in the geometry of backbones of the Asp-Phe-Gly (DFG) motif and the DFG-1 residue in the His-to-Tyr mutant. In addition, bioinformatics analyses show that the HxD-histidine is a mutational hotspot in tumor tissues. Moreover, the H174R mutation of the HxD-histidine, in the tumor suppressor LKB1 abrogates the inhibition of anchorage-independent growth of A549 cells by WT LKB1. Based on these data, we propose that the HxD-histidine is involved in a conserved inflexible organization of the catalytic core that is required for the kinase activity. Mutation of the HxD-histidine may also be involved in the pathogenesis of some diseases including cancer.


Subject(s)
Catalytic Domain , Conserved Sequence , Histidine/metabolism , Protein Kinases/chemistry , Protein Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Amino Acid Motifs , Arginine/genetics , Aurora Kinase A/chemistry , Aurora Kinase A/genetics , Cell Line, Tumor , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutation/genetics , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Structure-Activity Relationship , Tyrosine/genetics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...