Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Int J Biol Macromol ; 270(Pt 2): 132513, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777018

ABSTRACT

With the increasingly mature research on protein-based multi-component systems at home and abroad, the current research on protein-based functional systems has also become a hot spot and focus in recent years. In the functional system, the types of functional factors and their interactions with other components are usually considered to be the subjective factors of the functional strength of the system. Because this process is accompanied by the transfer of protons and electrons in the system, it has antioxidant, antibacterial and anti-inflammatory properties. Polyphenols and polysaccharides have the advantages of wide source, excellent functionality and good compatibility with proteins, and have become excellent and representative functional factors. However, polyphenols and polysaccharides are usually accompanied by poor stability, poor solubility and low bioavailability when used as functional factors. Therefore, the effect of separate release and delivery will inevitably lead to non-significant or direct degradation. After forming a multi-component composite system with the protein, the functional factor will form a stable system driven by hydrogen bonds, hydrophobic forces and electrostatic forces between the functional factor and the protein. When used as a delivery system, it will protect the functional factor, and when released, through the specific recognition of the cell membrane receptor signal, the effect of fixed-point delivery is achieved. In addition, this multi-component composite system can also form a functional composite film by other means, which has a long-term significance for prolonging the shelf life of food and carrying out specific antibacterial.


Subject(s)
Food Packaging , Polyphenols , Polysaccharides , Polyphenols/chemistry , Polysaccharides/chemistry , Food Packaging/methods , Proteins/chemistry , Humans , Antioxidants/chemistry , Antioxidants/pharmacology
2.
J Am Chem Soc ; 146(18): 12530-12537, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38664859

ABSTRACT

Electrocatalytic nitrogen oxide reduction (NOxRR) emerges as an effective way to bring the disrupted nitrogen cycle back into balance. However, efficient and selective NOxRR is still challenging partly due to the complex reaction mechanism, which is influenced by experimental conditions such as pH and electrode potential. Here, we have studied the enzyme-inspired iron single-atom catalysts (Fe-N4-C) and identified that the selectivity roots in the first step of the nitric oxide reduction. Combining the constrained molecular dynamics (MD) simulations with the quasi-equilibrium approximation, the effects of electrode potential and pH on the reaction free energy were considered explicitly and predicted quantitatively. Systematic heat maps for selectivity between single-N and N-N-coupled products in a wide pH-potential space are further developed, which have reproduced the experimental observations of NOxRR. The approach presented in this study allows for a realistic simulation of the electrocatalytic interfaces and a quantitative evaluation of interfacial effects. Our results in this study provide valuable and straightforward guidance for selective NOx reduction toward desired products by precisely designing the experimental conditions.

3.
J Colloid Interface Sci ; 667: 128-135, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38631251

ABSTRACT

The self-assembled carbon nitride quantum dots (CNQDs) has been largely advanced owing to the structure-relative photocatalytic activities, especially its electronic structure, which can be regulated by defects, functional groups, and doping. However, there are still issues such as wide band gaps for the assembles and severe recombination of photoinduced charges. Herein, we demonstrate the self-assembly of CNQDs into fusiform hollow superstructures (CNFHs), induced by hydrogen bonding between the terminal functional groups (-OH, -COOH, and -NH2). During the top-down assembly process, the hydrogen bonding dominates and initiates lateral cross-linking between adjacent CNQDs, which further twist into fusiform hollow structures. Benefitted greatly from the ultrathin and hollow nature of the superstructure that provides more exposed active sites, coupled with the introduction of phosphorus doping atoms into the framework induced narrowed band gap, CNFHs exhibits an 18-fold higher activity than the bulk counterpart toward photocatalytic hydrogen evolution after loading the CoP co-catalyst. This work presents a new platform to design and manipulate carbon nitride superstructures.

4.
BMC Psychol ; 12(1): 213, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632630

ABSTRACT

BACKGROUND: Adolescence is a pivotal stage vulnerable to mental health issues like anxiety and depression. While family relationships, mental toughness, and personality traits are known to impact adolescent mental health, their interactive and moderating roles are not fully understood. AIM: This study aims to investigate the mediating role of mental toughness in the relationship between family relationships and depression among high school students, and to examine the varying impacts of personality traits on this mediation. METHOD: A cross-sectional study was conducted on a sample of 734 adolescents. Participants completed measures assessing family relationships, mental toughness, personality traits, and mental health outcomes (depression). Latent Profile Analysis, Multiple Regression Analysis, and Structural Equation Modeling, to investigate these relationships. RESULTS: The study found that mental toughness significantly mediates the relationship between family relationships and depression. Notably, this mediating effect varied between personality type; it was more pronounced in the moderate-reserved type compared to the proactive-engaged type. LPA identified two distinct personality types of students based on their personality traits, with differential patterns of family relationships, mental toughness, and depression. Multiple regression analysis indicated that character and adaptability, components of mental toughness, were significant negative predictors of depression. CONCLUSION: The study contributes to understanding the dynamics of adolescent mental health, particularly in the context of Chinese high school students. It underscores the importance of considering family dynamics, personality traits, and mental toughness in developing effective mental health interventions for adolescents.


Subject(s)
Depression , Personality , Humans , Adolescent , Depression/psychology , Cross-Sectional Studies , Mental Health , Family Relations
5.
Int J Biol Macromol ; 265(Pt 2): 130987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508559

ABSTRACT

Among the common natural biomolecules, the excellent properties of proteins have attracted extensive attention from researchers for functional applications, however, in native form proteins have many limitations in the performance of their functional attribute. However, with the deepening of research, it has been found that the combination of natural active substances such as polyphenols, polysaccharides, etc. with protein molecules will make the composite system have stronger functional properties, while the utilization of pH-driven method, ultrasonic treatment, heat treatment, etc. not only provides a guarantee for the overall protein-based composite system, but also gives more possibilities to the protein-composite system. Protein composite systems are emerging in the fields of novel active packaging, functional factor delivery systems and gel systems with high medical value. The products of these protein composite systems usually have high functional properties, mainly due to the interaction of the remaining natural active substances with protein molecules, which can be broadly categorized into covalent interactions and non-covalent interactions, and which, despite the differences in these interactions, together constitute the cornerstone for the stability of protein composite systems and for in-depth research.


Subject(s)
Food , Hyperthermia, Induced , Drug Packaging , Polyphenols , Product Packaging , Food Packaging
6.
Nat Commun ; 15(1): 2774, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555288

ABSTRACT

The rational design of carbon-supported transition-metal single-atom catalysts requires the precise arrangement of heteroatoms within the single-atom catalysts. However, achieving this design is challenging due to the collapse of the structure during the pyrolysis. Here, we introduce a topological heteroatom-transfer strategy to prevent the collapse and accurately control the P coordination in carbon-supported single-atom catalysts. As an illustration, we have prepared self-assembled helical fibers with encapsulated cavities. Within these cavities, adjustable functional groups can chelate metal ions (Nx···Mn+···Oy), facilitating the preservation of the structure during the pyrolysis based phosphidation. This process allows for the transfer of heteroatoms from the assembly into single-atom catalysts, resulting in the precise coordination tailoring. Notably, the Co-P2N2-C catalyst exhibits electrocatalytic performance as a non-noble metal single-atom catalyst for alkaline hydrogen evolution, attaining a current density of 100 mA cm-2 with an overpotential of only 131 mV.

7.
Nano Lett ; 24(14): 4217-4223, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551179

ABSTRACT

Under shock loading, the spall strength of nanocrystals exhibits intricate grain-size effects due to the presence of abundant grain boundary and dislocation activities. However, the influence of size on spall toughness and void evolution has been largely overlooked. This study employs molecular dynamics simulations to investigate the damage accumulation characteristics of nanocrystalline aluminum across various grain sizes. Unlike the trade-off observed in quasi-static loading conditions, our study reveals a consistency in which grain size governs both nanovoid nucleation and coalescence, yielding a novel spall strength-toughness synergy. These insights highlight grain sizes that are particularly susceptible to spall fracture, offering a crucial understanding of nanocrystal failure mechanisms in extreme environments.

8.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38375907

ABSTRACT

The catalytic hydrogenation of biomass-derived chemicals is essential in chemical industry due to the growing demand for sustainable and renewable energy sources. In this study, we present a comprehensive theoretical investigation regarding the hydrogenation of glycolaldehyde to ethylene glycol over a Ru/C catalyst by employing density functional theory and ab initio molecular dynamics simulations. With inclusion of explicit solvation, we have demonstrated that the glycolaldehyde hydrogenation is significantly improved due to the fast proton transfer through the hydrogen bond network. The enhanced activity could be attributed to the participation of the solvent water as the hydrogen source and the highly positively charged state of a Ru cluster in an aqueous phase, which are critical for the activation of aldehyde groups and proton-assisted hydrogenation. Overall, our findings provide valuable insights into glycolaldehyde hydrogenation over Ru/C catalysts in the aqueous phase, highlighting the importance of solvation effects in the biomass conversion.

9.
Epidemiology ; 35(3): 408-417, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38261409

ABSTRACT

BACKGROUND: Although the indoor environment has been proposed to be associated with childhood sleep health, to our knowledge no study has investigated the association between home renovation and childhood sleep problems. METHODS: The study included 186,470 children aged 6-18 years from the National Chinese Children Health Study (2012-2018). We measured childhood sleeping problems via the Chinese version of the Sleep Disturbance Scale for Children (C-SDSC). Information on home renovation exposure within the recent 2 years was collected via parent report. We estimated associations between home renovation and various sleeping problems, defined using both continuous and categorized (binary) C-SDSC t-scores, using generalized mixed models. We fitted models with city as a random effect variable, and other covariates as fixed effects. RESULTS: Out of the overall participants, 89,732 (48%) were exposed to recent home renovations. Compared to the unexposed group, children exposed to home renovations had higher odds of total sleep disorder (odd ratios [OR] = 1.3; 95% confidence interval [CI] = 1.2, 1.4). Associations varied when we considered different types of home renovation materials. Children exposed to multiple types of home renovation had higher odds of sleeping problems. We observed similar findings when considering continuous C-SDSC t-scores. Additionally, sex and age of children modified the associations of home renovation exposure with some of the sleeping problem subtypes. CONCLUSIONS: We found that home renovation was associated with higher odds of having sleeping problems and that they varied when considering the type of renovation, cumulative exposure, sex, and age differences.


Subject(s)
Seizures , Sleep Wake Disorders , Child , Humans , Surveys and Questionnaires , Cities , China/epidemiology , Sleep Wake Disorders/epidemiology
10.
Nat Genet ; 56(2): 336-347, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38279041

ABSTRACT

Many methods have been developed to leverage expression quantitative trait loci (eQTL) data to nominate candidate genes from genome-wide association studies. These methods, including colocalization, transcriptome-wide association studies (TWAS) and Mendelian randomization-based methods; however, all suffer from a key problem-when assessing the role of a gene in a trait using its eQTLs, nearby variants and genetic components of other genes' expression may be correlated with these eQTLs and have direct effects on the trait, acting as potential confounders. Our extensive simulations showed that existing methods fail to account for these 'genetic confounders', resulting in severe inflation of false positives. Our new method, causal-TWAS (cTWAS), borrows ideas from statistical fine-mapping and allows us to adjust all genetic confounders. cTWAS showed calibrated false discovery rates in simulations, and its application on several common traits discovered new candidate genes. In conclusion, cTWAS provides a robust statistical framework for gene discovery.


Subject(s)
Genome-Wide Association Study , Transcriptome , Humans , Transcriptome/genetics , Genome-Wide Association Study/methods , Multifactorial Inheritance/genetics , Quantitative Trait Loci/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease
12.
Nucleic Acids Res ; 52(D1): D72-D80, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37904589

ABSTRACT

G-quadruplexes (G4s) are non-canonical four-stranded structures and are emerging as novel genetic regulatory elements. However, a comprehensive genomic annotation of endogenous G4s (eG4s) and systematic characterization of their regulatory network are still lacking, posing major challenges for eG4 research. Here, we present EndoQuad (https://EndoQuad.chenzxlab.cn/) to address these pressing issues by integrating high-throughput experimental data. First, based on high-quality genome-wide eG4s mapping datasets (human: 1181; mouse: 24; chicken: 2) generated by G4 ChIP-seq/CUT&Tag, we generate a reference set of genome-wide eG4s. Our multi-omics analyses show that most eG4s are identified in one or a few cell types. The eG4s with higher occurrences across samples are more structurally stable, evolutionarily conserved, enriched in promoter regions, mark highly expressed genes and associate with complex regulatory programs, demonstrating higher confidence level for further experiments. Finally, we integrate millions of functional genomic variants and prioritize eG4s with regulatory functions in disease and cancer contexts. These efforts have culminated in the comprehensive and interactive database of experimentally validated DNA eG4s. As such, EndoQuad enables users to easily access, download and repurpose these data for their own research. EndoQuad will become a one-stop resource for eG4 research and lay the foundation for future functional studies.


Subject(s)
Databases, Genetic , G-Quadruplexes , Regulatory Sequences, Nucleic Acid , Animals , Humans , Mice , Genome , Genomics
13.
Cell Rep ; 42(11): 113335, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37889749

ABSTRACT

Dysregulation of alternative splicing has been repeatedly associated with neurodevelopmental disorders, but the extent of cell-type-specific splicing in human neural development remains largely uncharted. Here, single-cell long-read sequencing in induced pluripotent stem cell (iPSC)-derived cerebral organoids identifies over 31,000 uncatalogued isoforms and 4,531 cell-type-specific splicing events. Long reads uncover coordinated splicing and cell-type-specific intron retention events, which are challenging to study with short reads. Retained neuronal introns are enriched in RNA splicing regulators, showing shorter lengths, higher GC contents, and weaker 5' splice sites. We use this dataset to explore the biological processes underlying neurological disorders, focusing on autism. In comparison with prior transcriptomic data, we find that the splicing program in autistic brains is closer to the progenitor state than differentiated neurons. Furthermore, cell-type-specific exons harbor significantly more de novo mutations in autism probands than in siblings. Overall, these results highlight the importance of cell-type-specific splicing in autism and neuronal gene regulation.


Subject(s)
Autistic Disorder , Humans , Autistic Disorder/genetics , Alternative Splicing/genetics , RNA Splicing/genetics , Protein Isoforms/genetics , Exons/genetics , Introns/genetics , RNA Splice Sites
14.
J Environ Manage ; 347: 119035, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37757687

ABSTRACT

In order to meet the land use requirements of the treated wastewater from high density polyethylene (HDPE) membrane-enclosed anaerobic lagoons, the physical and chemical properties of the wastewater in an HDPE membrane-enclosed anaerobic lagoon were measured. The total nitrogen content (TN) in wastewater treated in membrane-enclosed anaerobic lagoons is 3165 and 1510 mg/L in winter and summer respectively. The wastewater can be used as liquid organic fertilizer, partly replacing chemical fertilizer. The safety dosage of the wastewater was 21.48 t/ha for rice and 9.54 t/ha for corn, respectively. Meanwhile, the wastewater has the characteristics of high salt (conductivity>16.0 mS/cm) and high organic matter content (COD>16,900 mg/kg). Therefore, the potential negative effects of the wastewater on soil salinity and pH should be assessed. 16S rRNA was used to investigate the bacterial population structure and assess potential biological risks of land use of the wastewater. The wastewater from lagoon has the least and the most bacterial abundance in summer and winter, respectively. The bacterial diversity of wastewater samples from lagoon is the most. 21 and 24 phyla were detected in winter and summer samples respectively. Clostridium is the absolute dominant bacteria in the summer water samples and the absolute dominant bacteria is Trichococcus in winter water samples. Several animal and plant bacterial pathogens such as Campylobacter, Corynebacterium, Facklamia and Erysipelothrix can be detected in the wastewater samples. More than 70% of pathogenic bacteria such as Campylobacter, Facklamia, Erysipelothrix and Acholeplasma can be removed by lagoon in summer, but only about 99% of Corynebacterium is still in the lagoon (XYH). While more than 60% of Corynebacterium, Facklamia and Erysipelothrix are not removed in winter. So the biological risk of land use of anaerobic pond wastewater needs to be considered.


Subject(s)
Fertilizers , Wastewater , Animals , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Polyethylene , Bacteria/genetics , Water
15.
Ultrason Sonochem ; 98: 106532, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37517277

ABSTRACT

In recent years, new food processing technologies (such as ultrasound, high-pressure homogenization, and pulsed electric fields) have gradually appeared in the public 's field of vision. These technologies have made outstanding contributions to changing the structure and function of protein complexes. As a relatively mature physical field, ultrasound has been widely used in food-related fields. However, with the gradual deepening of related research, it is found that the combination of different fields often makes some characteristics of the product better than the product under the action of a single field, which will not only lead to a broader application prospect of the product, but also make the product a better solution in some special fields. There are usually synergistic and antagonistic effects when multiple fields are combined, and these effects will also gradually enlarge the interaction between different components of the protein complex system. In this paper, while explaining the mechanism of ultrasonic combined with other fields affecting the steric hindrance and shielding site of protein complex system, we will further explain the effect of this effect on the function and application of protein complex system.


Subject(s)
Food Handling , Ultrasonics , Food Handling/methods , Electricity
16.
Article in English | MEDLINE | ID: mdl-37477335

ABSTRACT

STUDY DESIGN: A prospective consecutive case study. Objective: This study aimed to assess the accuracy of computed tomography perfusion (CTP) in evaluating the vascularity of thoracolumbar metastases and to determine the impact of combining CTP with preoperative embolization on reducing intraoperative blood loss during separation surgery. SUMMARY OF BACKGROUND DATA: Surgery for thoracolumbar metastases is a complex procedure with the potential for substantial blood loss. Therefore, assessing tumor vascularity before surgery and taking measures to minimize intraoperative blood loss is essential. METHODS: A total of 62 patients with thoracolumbar metastases were prospectively enrolled. All patients underwent separation surgery using the posterior approach. Prior to surgery, the vascularity of the metastases was evaluated using CTP. Based on the CTP results, patients were categorized into hypervascular and hypovascular groups. Preoperative angiography and embolization were performed for the hypervascular group. Clinical data were abstracted, including intraoperative blood loss, perioperative complications, VAS score, neurological status, and the accuracy of vascularity evaluation by CTP confirmed by angiography. Chi-square testing was used to compare categorical variables, while independent sample t-tests were employed to compare continuous variables, with paired t-tests were used to assess differences from preoperative to postoperative time points. RESULTS: The mean intraoperative blood loss was 485±167 mL and 455±127.6 mL in the two groups, respectively. The accuracy of vascularity evaluation by CTP was 100%. In the hypervascular group, 80.6% of the patients experienced at least one level of improvement in neurological status, while the hypovascular group had 81.5% of patients with similar improvement. None of the patients experienced neurological deterioration. There was a significant reduction in VAS score in both groups after the operation. CONCLUSION: The vascularity of thoracolumbar metastases could be accurately evaluated using noninvasive CTP. When combined with preoperative embolization, this approach effectively and safely reduced intraoperative blood loss in the setting of separation surgery.

17.
Cell Biosci ; 13(1): 117, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37381029

ABSTRACT

G-quadruplex (G4) is a four-stranded helical DNA secondary structure formed by guanine-rich sequence folding, and G4 has been computationally predicted to exist in a wide range of species. Substantial evidence has supported the formation of endogenous G4 (eG4) in living cells and revealed its regulatory dynamics and critical roles in several important biological processes, making eG4 a regulator of gene expression perturbation and a promising therapeutic target in disease biology. Here, we reviewed the methods for prediction of potential G4 sequences (PQS) and detection of eG4s. We also highlighted the factors affecting the dynamics of eG4s and the effects of eG4 dynamics. Finally, we discussed the future applications of eG4 dynamics in disease therapy.

18.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37232385

ABSTRACT

The volume of ribonucleic acid (RNA)-seq data has increased exponentially, providing numerous new insights into various biological processes. However, due to significant practical challenges, such as data heterogeneity, it is still difficult to ensure the quality of these data when integrated. Although some quality control methods have been developed, sample consistency is rarely considered and these methods are susceptible to artificial factors. Here, we developed MassiveQC, an unsupervised machine learning-based approach, to automatically download and filter large-scale high-throughput data. In addition to the read quality used in other tools, MassiveQC also uses the alignment and expression quality as model features. Meanwhile, it is user-friendly since the cutoff is generated from self-reporting and is applicable to multimodal data. To explore its value, we applied MassiveQC to Drosophila RNA-seq data and generated a comprehensive transcriptome atlas across 28 tissues from embryogenesis to adulthood. We systematically characterized fly gene expression dynamics and found that genes with high expression dynamics were likely to be evolutionarily young and expressed at late developmental stages, exhibiting high nonsynonymous substitution rates and low phenotypic severity, and they were involved in simple regulatory programs. We also discovered that human and Drosophila had strong positive correlations in gene expression in orthologous organs, revealing the great potential of the Drosophila system for studying human development and disease.


Subject(s)
Drosophila melanogaster , Transcriptome , Humans , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Profiling/methods , RNA/genetics , RNA-Seq , Sequence Analysis, RNA , High-Throughput Nucleotide Sequencing/methods , Drosophila
19.
J Interv Med ; 6(1): 49-51, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37180373

ABSTRACT

Congenital intrahepatic portosystemic venous shunt (CPSVS), a rare vascular malformation, has been described in both children and adults and can lead to severe neurophysiological complications. However, a standard therapeutic protocol for CPSVS has not been elucidated. With the advantage of minimally invasive techniques, transcatheter embolization has been used to treat CPSVS. The condition is challenging to manage, especially in patients with large or multiple shunts, through which rapid blood flow can cause ectopic embolism. Here, we describe a case of CPSVS with a large shunt that was successfully treated with balloon-occluded retrograde transvenous obliteration with interlocking detachable coils.

20.
Phys Chem Chem Phys ; 25(20): 14368-14373, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37183923

ABSTRACT

When droplets are brought into contact and coalesced on a superhydrophobic surface, the kinetic energy converted from the surface energy enables the merged droplet to jump. Current studies mainly focus on the microstructure of surfaces and the properties of droplets that influence the jumping dynamics. Here, by means of molecular dynamics, we investigate the coalescence-induced jumping of nanodroplets on soft substrates. The optimum stiffness of the substrate is suggested and the mechanism involved is demonstrated through the analysis of the interactions between the droplets and the substrates. The momentum of the droplet is evaluated by integrating the forces from the substrate. The optimum stiffness for jumping velocity is provided by the competition between the impact and the adhesion from the substrate during the process, which are both closely related to the stiffness. The results may inspire fundamental research and applications in a broad scope.

SELECTION OF CITATIONS
SEARCH DETAIL
...