Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(22): 8860-8866, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36346747

ABSTRACT

Chiral nonlinear metasurfaces could natively synergize nonlinear wavefront manipulation and circular dichroism, offering enhanced capacity for multifunctional and multiplexed nonlinear metasurfaces. However, it is still quite challenging to simultaneously enable strong chiral response, precise wavefront control, high nonlinear conversion efficiency, and independent functions on spins and chirality. Here, we propose and experimentally demonstrate multiplexed third-harmonic (TH) holograms with four channels based on a chiral Au-ZnO hybrid metasurface. Specifically, the left- and right-handed circularly polarized (LCP and RCP) components of the TH holographic images can be designed independently under the excitation of an LCP (or RCP) fundamental beam. In addition, the TH conversion efficiency is measured to be as large as 10-5, which is 8.6 times stronger than that of a bare ZnO film with the same thickness. Thus, our work provides a promising platform for realizing efficient and multifunctional nonlinear nanodevices.


Subject(s)
Second Harmonic Generation Microscopy , Zinc Oxide , Circular Dichroism
2.
Nat Nanotechnol ; 17(11): 1178-1182, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36192494

ABSTRACT

Valleytronics is a promising candidate to address low-energy signal transport on chip, leveraging the valley pseudospin of electrons as a new degree of freedom to encode, process and store information1-7. However, valley-carrier nanocircuitry is still elusive, because it essentially requires valley transport that overcomes three simultaneous challenges: high fidelity, high directionality and room-temperature operation. Here we experimentally demonstrate a nanophotonic circuit that can route valley indices of a WS2 monolayer unidirectionally via the chirality of photons. Two propagating modes are supported in the gap area of the circuit and interfere with each other to generate beating patterns, which exhibit complementary profiles for circular dipoles of different handedness. Based on the spin-dependent beating patterns, we showcase valley fidelity of chiral photons up to 98%, and the circulation directionality is measured to be 0.44 ± 0.04 at room temperature. The proposed nanocircuit can not only enable the construction of large-scale valleytronic networks but also serve as an interactive interface to integrate valleytronics3-5, spintronics8-10 and integrated photonics11-13, opening new possibilities for hybrid spin-valley-photon ecosystems at the nanoscale.

3.
ACS Nano ; 16(2): 3221-3230, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35143162

ABSTRACT

Introducing the chiral spacers to two-dimensional (2D) lead halide perovskites (LHPs) enables them to exhibit circularly polarized photoluminescence (CPPL), which could have applications in chiral-optics and spintronics. Despite that a great deal of effort has been made in this field, the reported polarization degree of CPPL at ambient conditions is still very limited, and the integration of multiple functionalities also remains to be explored. Here we report the structures, CPPL, and piezoelectric energy harvesting properties of chiral 2D LHPs, [R-1-(4-bromophenyl)ethylaminium]2PbI4 (R-[BPEA]2PbI4) and [S-1-(4-bromophenyl)ethylaminium]2PbI4 (S-[BPEA]2PbI4). Our results show that these chiral perovskites are direct bandgap semiconductors and exhibit CPPL centered at ∼513 nm with a maximum degree of polarization of up to 11.0% at room temperature. In addition, the unique configurational arrangement of the chiral spacers is found to be able to reduce the interlayer π-π interactions and consequently result in strong electron-phonon coupling. Furthermore, the intrinsic chirality of both R-[BPEA]2PbI4 and S-[BPEA]2PbI4 enables them to be piezoelectric active, and their composite films can be applied to generate voltages and currents up to ∼0.6 V and ∼1.5 µA under periodic impacting with a strength of 2 N, respectively. This work not only reports a high degree of CPPL but also demonstrates piezoelectric energy harvesting behavior for realizing multifunctionalities in chiral 2D LHPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...