Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
BMC Infect Dis ; 24(1): 490, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741041

ABSTRACT

BACKGROUND: Toxoplasma gondii (T. gondii) is capable of infecting nearly all warm-blooded animals and approximately 30% of the global population. Though most infections are subclinical in immunocompetent individuals, congenital contraction can lead to severe consequences such as spontaneous abortion, stillbirth, and a range of cranio-cerebral and/or ocular abnormalities. Previous studies reported that T. gondii-infected pregnancy mice unveiled a deficit in both the amount and suppressive functions of regulatory T (Treg) cells, accompanied with reduced levels of forkhead box p3 (Foxp3). Recently, accumulative studies have demonstrated that microRNAs (miRNAs) are, to some extent, relevant to T. gondii infection. However, the link between alterations in miRNAs and downregulation of Foxp3 triggered by T. gondii has been only sporadically studied. METHODS: Quantitative reverse transcription polymerase chain reaction (RT-qPCR), protein blotting and immunofluorescence were employed to evaluate the impact of T. gondii infection and antigens on miRNA transcription and Foxp3 expression. Dual-luciferase reporter gene assays were performed to examine the fluorescence activity in EL4 cells, which were transfected with recombinant plasmids containing full-length/truncated/mutant microRNA-142a-3p (miR-142a) promoter sequence or wild type/mutant of Foxp3 3' untranslated region (3' UTR). RESULTS: We found a pronounced increase in miR-142a transcription, concurrent with a decrease in Foxp3 expression in T. gondii-infected mouse placental tissue. Similarly, comparable findings have been experimentally confirmed through the treatment of EL4 cells with T. gondii antigens (TgAg) in vitro. Simultaneously, miR-142a mimics attenuated Foxp3 expression, whereas its inhibitors markedly augmented Foxp3 expression. miR-142a promoter activity was elevated upon the stimulation of T. gondii antigens, which mitigated co-transfection of mutant miR-142a promoter lacking P53 target sites. miR-142a mimics deceased the fluorescence activity of Foxp3 3' untranslated region (3' UTR), but it did not affect the fluorescence activity upon the co-transfection of mutant Foxp3 3' UTR lacking miR-142a target site. CONCLUSION: In both in vivo and in vitro studies, a negative correlation was discovered between Foxp3 expression and miR-142a transcription. TgAg enhanced miR-142a promoter activity to facilitate miR-142a transcription through a P53-dependent mechanism. Furthermore, miR-142a directly targeted Foxp3 3' UTR, resulting in the downregulation of Foxp3 expression. Therefore, harnessing miR-142a may be a possible therapeutic approach for adverse pregnancy caused by immune imbalances, particularly those induced by T. gondii infection.


Subject(s)
Forkhead Transcription Factors , MicroRNAs , Toxoplasmosis , Animals , Female , Mice , Pregnancy , 3' Untranslated Regions , Down-Regulation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Pregnancy Outcome , T-Lymphocytes, Regulatory/immunology , Toxoplasma/pathogenicity , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Toxoplasmosis/metabolism
2.
Bioact Mater ; 33: 572-590, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38111651

ABSTRACT

A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.

3.
Front Vet Sci ; 10: 1324763, 2023.
Article in English | MEDLINE | ID: mdl-38026628

ABSTRACT

[This corrects the article DOI: 10.3389/fvets.2022.936620.].

4.
Mater Today Bio ; 21: 100718, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37455820

ABSTRACT

Neural tissue engineering techniques typically face a significant challenge, simulating complex natural vascular systems that hinder the clinical application of tissue-engineered nerve grafts (TENGs). Here, we report a subcutaneously pre-vascularized TENG consisting of a vascular endothelial growth factor-induced host vascular network, chitosan nerve conduit, and inserted silk fibroin fibers. Contrast agent perfusion, tissue clearing, microCT scan, and blood vessel 3D reconstruction were carried out continuously to prove whether the regenerated blood vessels were functional. Moreover, histological and electrophysiological evaluations were also applied to investigate the efficacy of repairing peripheral nerve defects with pre-vascularized TENG. Rapid vascular inosculation of TENG pre-vascularized blood vessels with the host vascular system was observed at 4 â€‹d bridging the 10 â€‹mm sciatic nerve defect in rats. Transplantation of pre-vascularized TENG in vivo suppressed proliferation of vascular endothelial cells (VECs) while promoting their migration within 14 â€‹d post bridging surgery. More importantly, the early vascularization of TENG drives axonal regrowth by facilitating bidirectional migration of Schwann cells (SCs) and the bands of Büngner formation. This pre-vascularized TENG increased remyelination, promoted recovery of electrophysiological function, and prevented atrophy of the target muscles when observed 12 weeks post neural transplantation. The neural tissue-engineered pre-vascularization technique provides a potential approach to discover an individualized TENG and explore the innovative neural regenerative process.

5.
Neural Regen Res ; 18(7): 1584-1590, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36571366

ABSTRACT

Neurotrophic factors, particularly nerve growth factor, enhance neuronal regeneration. However, the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages, such as its short biological half-life, its contribution to pain response, and its inability to cross the blood-brain barrier. Considering that let-7 (human miRNA) targets and regulates nerve growth factor, and that let-7 is a core regulator in peripheral nerve regeneration, we evaluated the possibilities of let-7 application in nerve repair. In this study, anti-let-7a was identified as the most suitable let-7 family molecule by analyses of endogenous expression and regulatory relationship, and functional screening. Let-7a antagomir demonstrated biosafety based on the results of in vivo safety assessments and it entered into the main cell types of the sciatic nerve, including Schwann cells, fibroblasts and macrophages. Use of hydrogel effectively achieved controlled, localized, and sustained delivery of let-7a antagomir. Finally, let-7a antagomir was integrated into chitosan conduit to construct a chitosan-hydrogel scaffold tissue-engineered nerve graft, which promoted nerve regeneration and functional recovery in a rat model of sciatic nerve transection. Our study provides an experimental basis for potential in vivo application of let-7a.

6.
Bioeng Transl Med ; 7(3): e10361, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36176610

ABSTRACT

One of the bottlenecks of advanced study on tissue engineering in regenerative medicine is rapid and functional vascularization. For a deeper comprehension of vascularization, the exhaustive, dynamic, and three-dimensional depiction of perfused vascular network reconstruction during peripheral nerve regeneration was performed using Micro-CT scanning. The 10 mm defect of sciatic nerve in rat was bridged by the autologous or tissue engineered nerve. The blood vessel anastomosis between nerve stumps and autologous nerve accomplished at 4 days to 1 week after surgery, which was a sufficient basis for the mature vascular network re-establishment. The stronger ability for sprouting angiogenesis and vascular remodeling of autologous nerve compared with tissue engineered nerve was revealed. However, common phases of vascularization in peripheral nerve regeneration were painted: hypoxic initiation, sprouting angiogenesis, and remodeling and maturation. The effect of less-concerned vascular remodeling on nerve regeneration was further analyzed after nerve crush injury. The blockage of vascular remodeling in late stage by VEGF injection significantly inhibited axons and myelin sheaths regeneration, which attenuated the impulse conduction toward reinnervated muscles. It was illustrated that a large amount of immature blood vessels rather than necessary vascular remodeling elevated local inflammation level in nerve regeneration microenvironment. The figures inspired us to understand the close connections between vascularization and peripheral nerve regeneration from a broader dimension to achieve better constructions, regulations and repair effects of tissue engineered nerves in clinic.

7.
Front Vet Sci ; 9: 936620, 2022.
Article in English | MEDLINE | ID: mdl-36046506

ABSTRACT

Transcription factors bind to specific DNA sequences, modulate the transcription of target genes, and regulate various biological processes, including peripheral nerve regeneration. Our previous analysis showed that SS18L1, a gene encoding the transcription factor SS18-like protein 1, was differentially expressed in the distal sciatic nerve stumps after rat sciatic nerve transection injury, but its effect on peripheral nerve injury has not been reported. In the current study, we isolated and cultured primary Schwann cells, and examined the role of SS18L1 for the biological functions of the cells. Depletion of SS18L1 by siRNA in Schwann cells enhanced cell proliferation and inhibited cell migration, as determined by EdU assay and transwell migration assay, respectively. In addition, silencing of SS18L1 inhibited Schwann cell differentiation induced by HRG and cAMP. Bioinformatics analyses revealed an interaction network of SS18L1, including DF2, SMARCD1, SMARCA4, and SMARCE1, which may be implicated in the regulatory functions of SS18L1 on the proliferation, migration and differentiation of Schwann cells. In conclusion, our results revealed a temporal expression profile of SS18L1 in peripheral nerve injury and its potential roles during the process of nerve recovery.

8.
PLoS Biol ; 20(6): e3001653, 2022 06.
Article in English | MEDLINE | ID: mdl-35648763

ABSTRACT

In contrast to the adult mammalian central nervous system (CNS), the neurons in the peripheral nervous system (PNS) can regenerate their axons. However, the underlying mechanism dictating the regeneration program after PNS injuries remains poorly understood. Combining chemical inhibitor screening with gain- and loss-of-function analyses, we identified p90 ribosomal S6 kinase 1 (RSK1) as a crucial regulator of axon regeneration in dorsal root ganglion (DRG) neurons after sciatic nerve injury (SNI). Mechanistically, RSK1 was found to preferentially regulate the synthesis of regeneration-related proteins using ribosomal profiling. Interestingly, RSK1 expression was up-regulated in injured DRG neurons, but not retinal ganglion cells (RGCs). Additionally, RSK1 overexpression enhanced phosphatase and tensin homolog (PTEN) deletion-induced axon regeneration in RGCs in the adult CNS. Our findings reveal a critical mechanism in inducing protein synthesis that promotes axon regeneration and further suggest RSK1 as a possible therapeutic target for neuronal injury repair.


Subject(s)
Axons , Nerve Regeneration , Animals , Axons/metabolism , Ganglia, Spinal/metabolism , Mammals , Nerve Regeneration/physiology , Protein Serine-Threonine Kinases , Retinal Ganglion Cells/metabolism
9.
Mater Today Bio ; 12: 100158, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34841240

ABSTRACT

Tissue-engineered nerve grafts (TENGs) are the most promising way for repairing long-distance peripheral nerve defects. Chitosan and poly (lactic-co-glycolic acid) (PLGA) scaffolds are considered as the promising materials in the pharmaceutical and biomedical fields especially in the field of tissue engineering. To further clarify the effects of a chitosan conduit inserted with various quantity of poly (lactic-co-glycolic acid) (PLGA) scaffolds, and their degrades on the peripheral nerve regeneration, the chitosan nerve conduit inserted with different amounts of PLGA scaffolds were used to repair rat sciatic nerve defects. The peripheral nerve regeneration at the different time points was dynamically and comprehensively evaluated. Moreover, the influence of different amounts of PLGA scaffolds on the regeneration microenvironment including inflammatory response and cell state were also revealed. The modest abundance of PLGA is more instrumental to the success of nerve regeneration, which is demonstrated in terms of the structure of the regenerated nerve, reinnervation of the target muscle, nerve impulse conduction, and overall function. The PLGA scaffolds aid the migration and maturation of Schwann cells. Furthermore, the PLGA and chitosan degradation products in a correct ratio neutralize, reducing the inflammatory response and enhancing the regeneration microenvironment. The balanced microenvironment regulated by the degradants of appropriate PLGA scaffolds and chitosan conduit promotes peripheral nerve regeneration. The findings represent a further step towards programming TENGs construction, applying polyester materials in regenerative medicine, and understanding the neural regeneration microenvironment.

10.
Mol Cell Biochem ; 472(1-2): 35-44, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32529497

ABSTRACT

Autologous nerve grafting is the golden standard therapeutic approach of peripheral nerve injury. However, the clinical effect of autologous nerve grafting is still unsatisfying. To achieve better clinical functional recovery, it is of an impending need to expand our understanding of the dynamic cellular and molecular changes after nerve transection and autologous nerve transplantation. To address this aim, in the current study, rats were subjected to sciatic nerve transection and autologous nerve grafting. Rat sciatic nerve segments were collected at 4, 7, and 14 days after surgery and subjected to antibody array analysis to determine phosphoprotein profiling patterns. Compared with rats that underwent sham surgery, a total of 48, 19, and 75 differentially expressed phosphoproteins with fold changes > 2 or < -2 were identified at 4, 7, and 14 days after autologous nerve grafting, respectively. Several phosphoproteins, including STAM2 (Phospho-Tyr192) and Tau (Phospho-Ser422), were found to be differentially expressed at multiple time points, suggesting the importance of the phosphorylation of these proteins. Western blot validation of the expression patterns of STAM2 (Phospho-Tyr192) indicated the accuracy of antibody array assay. Bioinformatic analysis of these differentially expressed proteins suggested that cellular behavior and organ morphology were significantly involved biological functions while cell behavior and immune response-related signaling pathways were significantly involved canonical signaling pathways. These outcomes contributed to the illumination of the molecular mechanisms underlying autologous nerve grafting from the phosphoprotein profiling perspective.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries/metabolism , Phosphoproteins/analysis , Phosphoproteins/metabolism , Recovery of Function , Sciatic Nerve/metabolism , Animals , Male , Peripheral Nerve Injuries/etiology , Peripheral Nerve Injuries/pathology , Phosphorylation , Protein Array Analysis , Rats , Rats, Sprague-Dawley , Sciatic Nerve/injuries , Sciatic Nerve/surgery
11.
Burns Trauma ; 8: tkaa002, 2020.
Article in English | MEDLINE | ID: mdl-32346538

ABSTRACT

Traumatic peripheral nerve injury is a worldwide clinical issue with high morbidity. The severity of peripheral nerve injury can be classified as neurapraxia, axonotmesis or neurotmesis, according to Seddon's classification, or five different degrees according to Sunderland's classification. Patients with neurotmesis suffer from a complete transection of peripheral nerve stumps and are often in need of surgical repair of nerve defects. The applications of autologous nerve grafts as the golden standard for peripheral nerve transplantation meet some difficulties, including donor nerve sacrifice and nerve mismatch. Attempts have been made to construct tissue-engineered nerve grafts as supplements or even substitutes for autologous nerve grafts to bridge peripheral nerve defects. The incorporation of stem cells as seed cells into the biomaterial-based scaffolds increases the effectiveness of tissue-engineered nerve grafts and largely boosts the regenerative process. Numerous stem cells, including embryonic stem cells, neural stem cells, bone marrow mesenchymal stem cells, adipose stem cells, skin-derived precursor stem cells and induced pluripotent stem cells, have been used in neural tissue engineering. In the current review, recent trials of stem cell-based tissue-engineered nerve grafts have been summarized; potential concerns and perspectives of stem cell therapeutics have also been contemplated.

12.
Neural Regen Res ; 15(8): 1502-1509, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31997815

ABSTRACT

The regenerative capacity of peripheral nerves is limited after nerve injury. A number of growth factors modulate many cellular behaviors, such as proliferation and migration, and may contribute to nerve repair and regeneration. Our previous study observed the dynamic changes of genes in L4-6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing. Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3, 9 hours, 1, 4, or 7 days after nerve crush, compared with the 0 hour control. Thirty-six rat models of sciatic nerve crush injury were prepared as described previously. Then, they were divided into six groups to measure the expression changes of representative genes at 0, 3, 9 hours, 1, 4 or 7 days post crush. Our current study measured the expression levels of representative upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin genes, and explored critical signaling pathways and biological process through bioinformatic analysis. Our data revealed that many of these dysregulated upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin, participated in tissue remodeling and axon growth-related biological processes Therefore, the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury. Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves. All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals, China (approval No. 20170302-017) on March 2, 2017.

13.
Glia ; 68(3): 670-679, 2020 03.
Article in English | MEDLINE | ID: mdl-31721324

ABSTRACT

Schwann cell, the major glial cell in the peripheral nervous system, plays an essential role in peripheral nerve regeneration. However, the regulation of Schwann cell behavior following nerve injury is insufficiently explored. According to the development of high-throughput techniques, long noncoding RNAs (lncRNAs) have been recognized. Accumulating evidence shows that lncRNAs take part in diverse biological processes and diseases. Here, by microarray analysis, we identified an upregulated lncRNA profile following sciatic nerve injury and focused on BC088259 for further investigation. Silencing or overexpression of BC088259 could affect Schwann cell migration. Mechanistically, BC088259 might exert this regulatory role by directly binding with Vimentin. Collectively, our study not only revealed a set of upregulated lncRNAs following nerve injury but also identified a new functional lncRNA, BC088259, which was important for Schwann cell migration, providing a therapeutic avenue toward peripheral nerve injury.


Subject(s)
Peripheral Nerve Injuries/metabolism , RNA, Long Noncoding/genetics , Schwann Cells/metabolism , Vimentin/metabolism , Animals , Cell Movement/physiology , Ganglia, Spinal/metabolism , Intermediate Filaments/metabolism , Nerve Regeneration/physiology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/pathology , Rats, Sprague-Dawley , Sciatic Neuropathy/physiopathology
14.
Neural Regen Res ; 14(9): 1651-1656, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31089066

ABSTRACT

MicroRNAs refer to a class of endogenous, short non-coding RNAs that mediate numerous biological functions. MicroRNAs regulate various physiological and pathological activities of peripheral nerves, including peripheral nerve repair and regeneration. Previously, using a rat sciatic nerve injury model, we identified many functionally annotated novel microRNAs, including miR-sc14. Here, we used real-time reverse transcription-polymerase chain reaction to examine miR-sc14 expression in rat sciatic nerve stumps. Our results show that miR-sc14 is noticeably altered following sciatic nerve injury, being up-regulated at 1 day and diminished at 7 days. EdU and transwell chamber assay results showed that miR-sc14 mimic promoted proliferation and migration of Schwann cells, while miR-sc14 inhibitor suppressed their proliferation and migration. Additionally, bioinformatic analysis examined potential target genes of miR-sc14, and found that fibroblast growth factor receptor 2 might be a potential target gene. Specifically, our results show changes of miR-sc14 expression in the sciatic nerve of rats at different time points after nerve injury. Appropriately, up-regulation of miR-sc14 promoted proliferation and migration of Schwann cells. Consequently, miR-sc14 may be an intervention target to promote repair of peripheral nerve injury. The study was approved by the Jiangsu Provincial Laboratory Animal Management Committee, China on March 4, 2015 (approval No. 20150304-004).

16.
Exp Ther Med ; 17(5): 4116-4122, 2019 May.
Article in English | MEDLINE | ID: mdl-30988788

ABSTRACT

MicroRNAs (miRNAs) are non-coding RNAs that regulate various tissues and organs, including the nervous system. Peripheral nerve injury is a common pathology of the nervous system and leads to differential expressions of a variety of miRNAs. Previously, a group of novel miRNAs have been identified in rat proximal nerve segments after sciatic nerve transection. However, the biological functions of these novel miRNAs remain undetermined. The aim of the current study was therefore to identify the function of a novel miRNA, miR-sc6, following nerve injury. Its target genes and effects on phenotypic modulation of Schwann cells were determined using a miR-sc6 mimic transfection. These observations contribute to the understanding of miRNA involvement in peripheral nerve injury and the cognition of regulatory mechanisms in peripheral nerve regeneration.

17.
J Cell Sci ; 132(6)2019 03 18.
Article in English | MEDLINE | ID: mdl-30782778

ABSTRACT

Tau protein (encoded by the gene microtubule-associated protein tau, Mapt) is essential for the assembly and stability of microtubule and the functional maintenance of the nervous system. Tau is highly abundant in neurons and is detectable in astrocytes and oligodendrocytes. However, whether tau is present in Schwann cells, the unique glial cells in the peripheral nervous system, is unclear. Here, we investigated the presence of tau and its coding mRNA, Mapt, in cultured Schwann cells and find that tau is present in these cells. Gene silencing of Mapt promoted Schwann cell proliferation and inhibited Schwann cell migration and differentiation. In vivo application of Mapt siRNA suppressed the migration of Schwann cells after sciatic nerve injury. Consistent with this, Mapt-knockout mice showed elevated proliferation and reduced migration of Schwann cells. Rats injected with Mapt siRNA and Mapt-knockout mice also exhibited impaired myelin and lipid debris clearance. The expression and distribution of the cytoskeleton proteins α-tubulin and F-actin were also disrupted in these animals. These findings demonstrate the existence and biological effects of tau in Schwann cells, and expand our understanding of the function of tau in the nervous system.


Subject(s)
Peripheral Nerve Injuries/physiopathology , Schwann Cells/metabolism , tau Proteins/metabolism , Actins/metabolism , Animals , Cell Differentiation/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured/cytology , Cells, Cultured/metabolism , Gene Knockdown Techniques , Male , Mice , Myelin Sheath/metabolism , RNA Interference , Rats , Rats, Sprague-Dawley , Schwann Cells/cytology , Sciatic Nerve/cytology , Tubulin/metabolism , tau Proteins/genetics , tau Proteins/isolation & purification
18.
J Biol Chem ; 294(10): 3489-3500, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30626732

ABSTRACT

Axon guidance helps growing neural axons to follow precise paths to reach their target locations. It is a critical step for both the formation and regeneration of neuronal circuitry. Netrin-1 (Ntn1) and its receptor, deleted in colorectal carcinoma (Dcc) are essential factors for axon guidance, but their regulation in this process is incompletely understood. In this study, using quantitative real-time RT-PCR (qRT-PCR) and biochemical and reporter gene assays, we found that the Ntn1 and Dcc genes are both robustly up-regulated in the sciatic nerve stump after peripheral nerve injury. Moreover, we found that the microRNA (miR) let-7 directly targets the Ntn1 transcript by binding to its 3'-untranslated region (3'-UTR), represses Ntn1 expression, and reduces the secretion of Ntn1 protein in Schwann cells. We also identified miR-9 as the regulatory miRNA that directly targets Dcc and found that miR-9 down-regulates Dcc expression and suppresses the migration ability of Schwann cells by regulating Dcc abundance. Functional examination in dorsal root ganglion neurons disclosed that let-7 and miR-9 decrease the protein levels of Ntn1 and Dcc in these neurons, respectively, and reduce axon outgrowth. Moreover, we identified a potential regulatory network comprising let-7, miR-9, Ntn1, Dcc, and related molecules, including the RNA-binding protein Lin-28 homolog A (Lin28), SRC proto-oncogene nonreceptor tyrosine kinase (Src), and the transcription factor NF-κB. In summary, our findings reveal that the miRs let-7 and miR-9 are involved in regulating neuron pathfinding and extend our understanding of the regulatory pathways active during peripheral nerve regeneration.


Subject(s)
DCC Receptor/genetics , Down-Regulation/genetics , MicroRNAs/genetics , Nerve Regeneration/genetics , Netrin-1/genetics , Sciatic Nerve/physiology , 3' Untranslated Regions/genetics , Animals , Axon Guidance/genetics , Base Sequence , Cell Movement/genetics , Ganglia, Spinal/cytology , Humans , Netrin-1/metabolism , Neurons/cytology , Neurons/metabolism , Proto-Oncogene Mas , Rats , Sciatic Nerve/cytology , Sciatic Nerve/injuries , Sciatic Nerve/metabolism
19.
Neural Regen Res ; 14(3): 525-531, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30539823

ABSTRACT

MicroRNAs (miRNAs) can regulate the modulation of the phenotype of Schwann cells. Numerous novel miRNAs have been discovered and identified in rat sciatic nerve segments, including miR-3099. In the current study, miR-3099 expression levels following peripheral nerve injury were measured in the proximal stumps of rat sciatic nerves after surgical crush. Real-time reverse transcription-polymerase chain reaction was used to determine miR-3099 expression in the crushed nerve segment at 0, 1, 4, 7, and 14 days post sciatic nerve injury, which was consistent with Solexa sequencing outcomes. Expression of miR-3099 was up-regulated following peripheral nerve injury. EdU and transwell chamber assays were used to observe the effect of miR-3099 on Schwann cell proliferation and migration. The results showed that increased miR-3099 expression promoted the proliferation and migration of Schwann cells. However, reduced miR-3099 expression suppressed the proliferation and migration of Schwann cells. The potential target genes of miR-3099 were also investigated by bioinformatic tools and high-throughput outcomes. miR-3099 targets genes Aqp4, St8sia2, Tnfsf15, and Zbtb16 and affects the proliferation and migration of Schwann cells. This study examined the levels of miR-3099 at different time points following peripheral nerve injury. Our results confirmed that increased miR-3099 level induced by peripheral nerve injury can promote the proliferation and migration of Schwann cells.

20.
Mol Brain ; 11(1): 73, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30558654

ABSTRACT

Peripheral nerve injury is a worldwide clinical issue that impacts patients' quality of life and causes huge society and economic burden. Injured peripheral nerves are able to regenerate by themselves. However, for severe peripheral nerve injury, the regenerative abilities are very limited and the regenerative effects are very poor. A better understanding of the mechanisms following peripheral nerve injury will benefit its clinical treatment. In this study, we systematically explored the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) in the injured sciatic nerve segments after nerve crush, identified significantly involved Gene ontology (GO) terms and Kyoto Enrichment of Genes and Genomes (KEGG) pathways, and innovatively analyzed the correlation of differentially expressed mRNAs and lncRNAs. After the clustering of co-expressed mRNAs and lncRNAs, we performed functional analysis, selected GO term "negative regulation of cell proliferation", and constructed a competing endogenous RNA (ceRNA) network of LIF and HMOX1 gene in this GO term. This study is the first to provide a systematic dissection of mRNA-microRNA (miRNA)-lncRNA ceRNA network following peripheral nerve injury and thus lays a foundation for further investigations of the regulating mechanisms of non-coding RNAs in peripheral nerve repair and regeneration.


Subject(s)
Gene Regulatory Networks , Peripheral Nerve Injuries/genetics , RNA/genetics , Animals , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Male , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Reproducibility of Results , Sciatic Nerve/injuries , Sciatic Nerve/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...