Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38610308

ABSTRACT

This article primarily focuses on the localization and extraction of multiple moving objects in images taken from a moving camera platform, such as image sequences captured by drones. The positions of moving objects in the images are influenced by both the camera's motion and the movement of the objects themselves, while the background position in the images is related to the camera's motion. The main objective of this article was to extract all moving objects from the background in an image. We first constructed a motion feature space containing motion distance and direction, to map the trajectories of feature points. Subsequently, we employed a clustering algorithm based on trajectory distinctiveness to differentiate between moving objects and the background, as well as feature points corresponding to different moving objects. The pixels between the feature points were then designated as source points. Within local regions, complete moving objects were segmented by identifying these pixels. We validated the algorithm on some sequences in the Video Verification of Identity (VIVID) program database and compared it with relevant algorithms. The experimental results demonstrated that, in the test sequences when the feature point trajectories exceed 10 frames, there was a significant difference in the feature space between the feature points on the moving objects and those on the background. Correctly classified frames with feature points accounted for 67% of the total frames.The positions of the moving objects in the images were accurately localized, with an average IOU value of 0.76 and an average contour accuracy of 0.57. This indicated that our algorithm effectively localized and segmented the moving objects in images captured by moving cameras.

2.
Sensors (Basel) ; 23(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139684

ABSTRACT

Infrared small target detection plays a crucial role in maritime security. However, detecting small targets within heavy sea clutter environments remains challenging. Existing methods often fail to deliver satisfactory performance in the presence of substantial clutter interference. This paper analyzes the spatial-temporal appearance characteristics of small targets and sea clutter. Based on this analysis, we propose a novel detection method based on the appearance stable isotropy measure (ASIM). First, the original images are processed using the Top-Hat transformation to obtain the salient regions. Next, a preliminary threshold operation is employed to extract the candidate targets from these salient regions, forming a candidate target array image. Third, to distinguish between small targets and sea clutter, we introduce two characteristics: the gradient histogram equalization measure (GHEM) and the local optical flow consistency measure (LOFCM). GHEM evaluates the isotropy of the candidate targets by examining their gradient histogram equalization, while LOFCM assesses their appearance stability based on local optical flow consistency. To effectively combine the complementary information provided by GHEM and LOFCM, we propose ASIM as a fusion characteristic, which can effectively enhance the real target. Finally, a threshold operation is applied to determine the final targets. Experimental results demonstrate that our proposed method exhibits superior comprehensive performance compared to baseline methods.

3.
Appl Opt ; 60(31): 9748-9756, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34807160

ABSTRACT

In the high-gain photoelectric receiver circuit, the method based on the field-shunting effect is applied to improve the bandwidth of the transimpedance amplifier. This method is implemented by adding a ground trace under the gain resistor, which reduces the parasitic capacitance of the gain resistor and thus increases the bandwidth. To obtain the specific impact of this method on bandwidth, a series of simulations are carried out, including electromagnetic simulations of a three-dimensional structure of circuit gain part and simulation program with integrated circuit emphasis (SPICE) simulations of the high-gain voltage-current feedback transimpedance amplifier. Finally, the optimal simulation result shows that selecting a 1206 size chip fixed resistor and setting the ground trace width to 1.1 mm can greatly reduce the influence of resistor parasitic effects on the circuit, thereby achieving the best performance of bandwidth extension. Further, the comparative experiment also verifies the effectiveness of the method for bandwidth enhancement.

4.
Opt Express ; 28(16): 23554-23568, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752350

ABSTRACT

In the pulsed light time-of-flight (ToF) measurement, the timing point generated in the receiver channel is very important to the measurement accuracy. Therefore, a differential hysteresis timing discrimination method is proposed to generate timing points of the receiver channel. This method is based on utilizing the unbalanced characteristics of the fully differential operational amplifier circuit as well as introducing extra hysteresis levels to achieve the stable generation of timing points. With this method, fewer circuit components are consumed and the dynamic range of the receiver channel is not limited by its linear range. The experiments demonstrate that a receiver channel applying the proposed discrimination reaches better single shot accuracy compared to that using leading-edge timing discrimination. This method is also suitable for the timing walk error compensation by means of pulse width. Finally, these results verify the effectiveness of the proposed method in pulsed light ToF measurement.

5.
Appl Opt ; 59(4): 1193-1197, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32225260

ABSTRACT

As a new analytical method for identifying marine oil slicks, the primary function of the polarization scattering model is to determine the intensity of polarized scattered light from different oil spill zones. In the polarized light path, the energy reduction is mainly due to the scattering characteristics of the surface of the sample to be tested. To quantify equivalence, we define the polarized scattering rate (PSR). The PSR describes the probability that linearly polarized incident photons scatter into the unit solid angle in the direction of scattering from the target surface. In order to verify the applicability of the model, we applied it to detect an actual oil spill at sea in the case of simulated sunlight. The research indicates that the PSR only characterizes the amplitude conversion between the polarized scattering wave and the incident wave and is not affected by the polarization characteristics of the incident wave, thus reflecting the true polarization characteristics of the target itself. The PSR of crude oil and seawater depends not only on the physical properties of the target itself, but also on the observation conditions, such as relative attitude orientation, spatial geometric position relationship, and the working frequency of equipment and instruments.

6.
Appl Opt ; 58(28): 7741-7748, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31674456

ABSTRACT

A four-quadrant detector is a kind of photoelectric detector that can quickly and accurately measure the incident angle of light. However, its ability to measure in a large field of view (FOV) is limited by its hardware structure and its calculation principle. To solve these problems, this paper proposes an improved algorithm that can extend the measurement linear range without reducing its measurement accuracy. After that, through simulation and experiment, we compare it with many other location algorithms, including the most widely used classical algorithm and the logarithmic algorithm suitable for large FOVs. Finally, the following conclusions can be drawn from both theoretical data and experimental data: the improved algorithm can significantly improve the measurement accuracy over 50% in the same FOV condition, and the measurable range can be expanded over 25% in the same accuracy requirement. At the same time, the robustness of noise does not decrease; when the root mean square error of the classical algorithm fluctuates at 0.1° in different SNR conditions, the improved algorithm is also 0.1°, while the logarithmic algorithm can reach 1.7°, and other algorithms are around 0.25°. In addition, the improved algorithm is more stable in measuring a certain direction and can effectively avoid the influence from the offset of incident light in another axis.

7.
Appl Opt ; 57(24): 6898-6905, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30129575

ABSTRACT

In the system of tracking and detection based on the four-quadrant detector (4-QD), the energy distribution of the incident spot and the blind area of the photosensitive surface will affect the location accuracy. The current model of the spot is based on the ideal circular Gauss spot, which makes the error caused by the spot shape easily ignored. In this paper, the model of the spot energy distribution is improved, which can adapt to the elliptical Gauss distribution. The width of the blind area is also added to the response models of the detector so that the output of each quadrant and the error of the localization algorithm can be calculated more accurately. The simulation results show that the measurement accuracy of 4-QD decreases with the increase of the blind area, the shape, and the inclination of the light spot. In the experiment, we first verify the correctness and practicability of the improved model of the spot energy distribution, and then the improved model is proved to be able to make the response and error calculation more accurate.

8.
Appl Opt ; 57(5): 1254-1259, 2018 Feb 10.
Article in English | MEDLINE | ID: mdl-29469873

ABSTRACT

As a new analytical method to identify oil spills at sea, the main effect of a polarization measurement system is the scattering polarization information of different measured parts. To improve measurement accuracy, the scattering polarization characteristics of oil film and seawater were observed in this paper. A useful computational model, the scattering polarization coherency matrix (SPCM), was derived, which is a probabilistic mixture of the polarization coherency matrix. Combined with the Fresnel formula, the amplitude ratio and phase retardation were extracted to verify the scientific nature of the physical model. Experiments were performed, and the SPCM of the oil film and seawater were measured. In order to test the practicability of the model, we derived the degree of polarization from the SPCM and used it as the basis for identification of the actual oil spill at sea in the case of sunlight. Research indicated that the path of multiple scattering was in connection with the molecular structure and interactions of the medium. Under different measuring angles, the SPCM of the oil film and seawater have both differences and regularities; the experimental results indicate that it can be used for the rapid detection of an oil spill at sea, and the data are accurate and reliable.

9.
Sensors (Basel) ; 18(1)2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29337894

ABSTRACT

Inclinometer assembly error is one of the key factors affecting the measurement accuracy of photoelectric measurement systems. In order to solve the problem of the lack of complete attitude information in the measurement system, this paper proposes a new inclinometer assembly error calibration and horizontal image correction method utilizing plumb lines in the scenario. Based on the principle that the plumb line in the scenario should be a vertical line on the image plane when the camera is placed horizontally in the photoelectric system, the direction cosine matrix between the geodetic coordinate system and the inclinometer coordinate system is calculated firstly by three-dimensional coordinate transformation. Then, the homography matrix required for horizontal image correction is obtained, along with the constraint equation satisfying the inclinometer-camera system requirements. Finally, the assembly error of the inclinometer is calibrated by the optimization function. Experimental results show that the inclinometer assembly error can be calibrated only by using the inclination angle information in conjunction with plumb lines in the scenario. Perturbation simulation and practical experiments using MATLAB indicate the feasibility of the proposed method. The inclined image can be horizontally corrected by the homography matrix obtained during the calculation of the inclinometer assembly error, as well.

10.
Appl Opt ; 56(18): 5248-5252, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-29047578

ABSTRACT

Space-borne sensors can provide valuable spatial image data, which play an irreplaceable role in ground target observation. In this paper, we have derived a parameter called the scattering efficiency per unit area (SEA), which is used to describe the ability of different media to change the energy of an incident field in the far zone. Over the range of Hyperion wavelengths, the SEA are unequal, which can be used as the characteristic signal for target classification. In order to increase the accuracy of this model, we selected five groups of characteristic bands unaffected by noise using principal component analysis. We then combined this with a backpropagation neural network; the identification of five ground media was implemented, and the residuals were very low. These theoretical and experimental analyses verify that SEA can be used as the basis for studying the physical characteristics of scattering of ground targets.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(1): 183-8, 2017 01.
Article in Chinese | MEDLINE | ID: mdl-30196584

ABSTRACT

As an important part in the modern warfare, camouflage technology plays a critical role in the battlefield, and the results of detection of camouflage target directly affect the results of war. However, there is little paper to detect camouflage paint by depolarization characteristics, so it is of great significance to use the depolarization technology to study the distinguishment of camouflage paints. To address this issue, we studied the mechanism of the scattering of electromagnetic wave, and analysed the relationship between the characteristics of depolarization and mechanism of scattering. Jones Matrix and Mueller Matrix were used to set up the physical model, and the Mueller-Jones Matrix was decomposed with the characteristics of polarization, then the depolarization coefficients(ωd) of the surfaces of the samples was acquired. In this experiment, we measured soil and three kinds of camouflage yellow paints in seven different incident angles to analyze the characteristics of depolazation of the soil and three kinds of camouflage yellow paints' surfaces. Finally, we applied the theory of Fresnel formulas to verify the theoretical model. The results showed that: the depolarization coefficients of the samples' surfaces were related to the scattering, and with the increase of the incident angles, the depolarization coefficients were decline. But in the whole measurement process, the depolarization coefficients of the soil were far above the camouflage paints'. Research indicated that: this article was the first paper which used the depolarization coefficients as an important parameter to identify the camouflage targets, and could identify the camouflage yellow paints in the soil-background accurately and effectively. The processes of the experiments were simpler, and the time was shorter. In modern battlefield, it could identify the camouflage targets quickly and easily, and furnish the precious time for the victory of the war. Therefore, the depolarization technology had a great application value, and the paper had very important significance on the development of camouflage recognition technology.

12.
Appl Opt ; 55(27): 7604-12, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27661588

ABSTRACT

Infrared (IR) small target detection is one of the vital techniques in many military applications, including IR remote sensing, early warning, and IR precise guidance. Over-complete dictionary based sparse representation is an effective image representation method that can capture geometrical features of IR small targets by the redundancy of the dictionary. In this paper, we concentrate on solving the problem of robust infrared small target detection under various scenes via sparse representation theory. First, a frequency saliency detection based preprocessing is developed to extract suspected regions that may possibly contain the target so that the subsequent computing load is reduced. Second, a target over-complete dictionary is constructed by a varietal two-dimensional Gaussian model with an extent feature constraint and a background term. Third, a sparse representation model with a non-negativity constraint is proposed for the suspected regions to calculate the corresponding coefficient vectors. Fourth, the detection problem is skillfully converted to an l1-regularized optimization through an accelerated proximal gradient (APG) method. Finally, based on the distinct sparsity difference, an evaluation index called sparse rate (SR) is presented to extract the real target by an adaptive segmentation directly. Large numbers of experiments demonstrate both the effectiveness and robustness of this method.

13.
Appl Opt ; 55(21): 5513-9, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27463898

ABSTRACT

A novel method to optimize the polarization state of a polarimetric imaging system is proposed to solve the problem of target/background contrast enhancement in an outdoor environment adaptively. First, the last three elements of the Stokes vector are selected to be the observed object's polarization features, the discriminant projection of which is regarded as the detecting function of our imaging system. Then, the polarization state of the system, which can be seen as a physical classifier, is calculated by training samples with a support vector machine method. Finally, images processed by the system with the designed optimal polarization state become discriminative output directly. By this means, the target/background contrast is enhanced greatly, which results in a more accurate and convenient target discrimination. Experimental results demonstrate that the effectiveness and discriminative ability of the optimal polarization state are credible and stable.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(6): 1916-20, 2016 Jun.
Article in Chinese | MEDLINE | ID: mdl-30053353

ABSTRACT

As the polarization characteristics are the physical property determined by the material itself, its corresponding polarization image contains abundant target's information. Using polarization information to identify the target is always a hot research topic in the field of the target detection. Active polarization imaging has more advantages compared with passive polarization imaging because of its high signal-to-noise ratio and good controllability. In this paper, based on the detailed analysis of the theory of the distribution of polarization Fresnel reflectance ratio, a kind of active polarization imaging method is proposed with detecting the polarization Fresnel ratio of the surface of the object. The proposed method adopts two kind of polarization light with orthogonal polarization direction at the light emission part to exposure to the target scenario alternately. Then two cameras side-by-side at the detecting part respectively equipped with two orthogonal polarization direction filters to capture the polarization images. Meanwhile, the detectors are placed in different detecting direction to acquire the polarization imaging with active polarization light source illuminating. Finally, with transmitting the data to the calculating center, optical constants can be recovered from the polarization data by the optimization fitting technique. Because the materials of target's surface are different, the corresponding optical constants are different. Then the purpose of discriminating the targets with different materials is achieved. The simulated and actual measured experiments are explored to verify the effectiveness of the proposed method. Simulation experiment shows it is not only scientific but also more convenient and effective in that the proposed method can distinguish the different materials using the calculated optical constants. The actual measured data further shows that the method is able to do better in recover optical constants of targets, especially in the distinction between metal and dielectric materials. Furthermore, the system has great application prospect in the field of target detection and camouflage recognition with its simple structure and practicability.

15.
Opt Lett ; 40(18): 4336-9, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26371930

ABSTRACT

Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions.

16.
Appl Opt ; 50(1): 1-10, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21221152

ABSTRACT

Nowadays, convergence and ghosting artifacts are common problems in scene-based nonuniformity correction (NUC) algorithms. In this study, we introduce the idea of space frequency to the scene-based NUC. Then the convergence speed factor is presented, which can adaptively change the convergence speed by a change of the scene dynamic range. In fact, the convergence speed factor role is to decrease the statistical data standard deviation. The nonuniformity space relativity characteristic was summarized by plenty of experimental statistical data. The space relativity characteristic was used to correct the convergence speed factor, which can make it more stable. Finally, real and simulated infrared image sequences were applied to demonstrate the positive effect of our algorithm.

17.
Appl Opt ; 49(10): 1764-73, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20357858

ABSTRACT

Stripe nonuniformity is very typical in line infrared focal plane arrays (IR-FPA) and uncooled staring IR-FPA. In this paper, the mechanism of the stripe nonuniformity is analyzed, and the gray-scale co-occurrence matrix theory and optimization theory are studied. Through these efforts, the stripe nonuniformity correction problem is translated into the optimization problem. The goal of the optimization is to find the minimal energy of the image's line gradient. After solving the constrained nonlinear optimization equation, the parameters of the stripe nonuniformity correction are obtained and the stripe nonuniformity correction is achieved. The experiments indicate that this algorithm is effective and efficient.

18.
J Chem Phys ; 126(6): 064901, 2007 Feb 14.
Article in English | MEDLINE | ID: mdl-17313238

ABSTRACT

The authors report the formation of highly oriented wrinkling on the surface of the bilayer [polystyrene (PS)/poly(vinyl pyrrolidone) (PVP)] confined by a polydimethylsiloxane (PDMS) mold in a water vapor environment. When PVP is subjected to water vapor, the polymer loses its mechanical rigidity and changes to a viscous state, which leads to a dramatic change in Young's modulus. This change generates the amount of strain in the bilayer to induce the wrinkling. With a shape-controlled mold, they can get the ordered wrinkles perfectly perpendicular or leaned 45 degrees to the channel orientation of the mold because the orientation of the resultant force changes with the process of water diffusion which drives the surface to form the wrinkling. Additionally, they can get much smaller wrinkles than the stripe spacing of PDMS mold about one order. The wrinkle period changes with the power index of about 0.5 for various values of the multiplication product of the film thicknesses of the two layers, namely, lambda approximately (h(PS)h(PVP))(1/2).

SELECTION OF CITATIONS
SEARCH DETAIL
...