Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Nutr ; 9: 1064507, 2022.
Article in English | MEDLINE | ID: mdl-36687723

ABSTRACT

Renal ischemia-reperfusion (I/R) injury may lead to acute kidney injury, which is characterized by high morbidity and mortality rates. Resveratrol (RSV) can be extracted from Chinese herbs, and multiple animal experiments have demonstrated its potential for renal protection. This systematic review evaluates the protective effect of RSV against renal I/R injury in animal models. The PubMed, Embase, Web of Science, and Science Direct databases were searched for animal experiments related to RSV in renal I/R injury from their establishment to June 2022. In total, 19 studies were included with 249 animals (129 treated with RSV and 120 as controls). The pooled analysis revealed that RSV administration significantly decreased serum creatinine (SCr) levels (16 studies, n = 243, WMD = -58.13, 95% CI = -79.26 to -37.00, p < 0.00001) and blood urea nitrogen (BUN) levels (12 studies, n = 163, WMD = -34.37, 95% CI = -46.70 to -22.03, p < 0.00001) in the renal I/R injury model. The level of malondialdehyde (MDA), an oxidative stress index, was alleviated [7 studies, n = 106, standardized mean difference (SMD) = -6.05, 95% CI = -8.90 to -3.21, p < 0.0001] and antioxidant enzymes such as glutathione (GSH) (7 studies, n = 115, SMD = 9.25, 95% CI = 5.51-13.00, p < 0.00001) and catalase (CAT) (4 studies, n = 59, SMD = 8.69, 95% CI = 4.35-13.03, p < 0.0001) were increased after treatment of RSV. The subgroup analysis suggested that 5-10 mg/kg of RSV optimally protects against renal I/R injury as both the BUN and SCr levels were significantly decreased at this dosage. The protective effects of RSV against renal I/R injury might be attributed to multiple mechanisms, such as inhibiting oxidative stress, apoptosis, inflammation, fibrillation, and promoting autophagy. For a deeper understanding of the protective effects of RSV, experimental studies on animal models and large randomized controlled trials in humans are needed.

2.
Biol Psychiatry ; 82(8): 608-618, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28390647

ABSTRACT

BACKGROUND: The mesolimbic reward system plays a critical role in modulating nociception; however, its underlying molecular, cellular, and neural circuitry mechanisms remain unknown. METHODS: Chronic constrictive injury (CCI) of the sciatic nerve was used to model neuropathic pain. Projection-specific in vitro recordings in mouse brain slices and in vivo recordings from anesthetized animals were used to measure firing of dopaminergic neurons in the ventral tegmental area (VTA). The role of VTA-nucleus accumbens (NAc) circuitry in nociceptive regulation was assessed using optogenetic and pharmacological manipulations, and the underlying molecular mechanisms were investigated by Western blotting, enzyme-linked immunosorbent assays, and conditional knockdown techniques. RESULTS: c-Fos expression in and firing of contralateral VTA-NAc dopaminergic neurons were elevated in CCI mice, and optogenetic inhibition of these neurons reversed CCI-induced thermal hyperalgesia. CCI increased the expression of brain-derived neurotrophic factor (BDNF) protein but not messenger RNA in the contralateral NAc. This increase was reversed by pharmacological inhibition of VTA dopaminergic neuron activity, which induced an antinociceptive effect that was neutralized by injecting exogenous BDNF into the NAc. Moreover, inhibition of BDNF synthesis in the VTA with anisomycin or selective knockdown of BDNF in the VTA-NAc pathway was antinociceptive in CCI mice. CONCLUSIONS: These results reveal a novel mechanism of nociceptive modulation in the mesolimbic reward circuitry and provide new insight into the neural circuits involved in the processing of nociceptive information.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Limbic System/metabolism , Neuralgia/pathology , Neuralgia/physiopathology , Nociception/physiology , Reward , Animals , Baclofen/pharmacology , Benzazepines/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Cardiotonic Agents/pharmacology , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Functional Laterality , GABA-B Receptor Agonists/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition/drug effects , Nociception/drug effects , Pain Threshold/physiology , Proto-Oncogene Proteins c-fos/metabolism , Pyrimidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL