Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(48): e2304258, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37525327

ABSTRACT

How to mildly structure a high intrinsic activity and stable catalytic electrode to realize long-term catalytic water splitting to produce hydrogen at a wide range of pH values at industrial high current is a challenge. Herein, this work creatively proposes to prepare industrial-grade catalytic electrodes with high efficiency and stability at high current density through carbon quantum dots (CDs) modification nickel sulfide on hydrophilic flexible filter paper via one-step mild chemical plating (denoted as CDs-Ni3 S2 @HFP). The intrinsic activity and surface area, electron transfer ability, and corrosion resistance of Ni3 S2 material are increased due to the regulation, homogenous, and high concentration doping of CDs. The overpotential of the flexible catalytic electrode is only 30, 35, and 87 mV in 1 m KOH, simulated seawater (1 m KOH + 0.5 m NaCl), and neutral electrolyte (0.5 m PBS) at a current density of 10 mA cm-2 . More attractively, the CDs-Ni3 S2 @HFP electrode achieves over 500 h of efficient and stable catalysis at industrial high current density (500 mA cm-2 ). Due to the advantages of mild, universal, and large-area preparation of catalytic materials, this work provides technical support for flexible catalytic electrodes in efficient catalysis toward water splitting, energy storage, and device preparation.

2.
Plants (Basel) ; 11(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35050055

ABSTRACT

Odorant-binding proteins (OBPs) play a key role in the olfactory system and are essential for mating and oviposition host selection. Tirathaba rufivena, a serious lepidopterous insect pest of the palm area in recent years, has threatened cultivations of Areca catechu in Hainan. Female-biased odorant-binding protein 4 of T. rufivena (TrufOBP4) expression was hypothesized to participate in the process of oviposition host recognition and localization. In this study, we cloned and analyzed the cDNA sequence of TrufOBP4. The predicted mature protein TrufOBP4 is a small, soluble, secretory protein and belongs to a classic OBP subfamily. Fluorescence binding assay results showed that TrufOBP4 had high binding abilities with the host plant volatiles, octyl methoxycinnamate, dibutyl phthalate, myristic acid and palmitic acid. These four components tend to dock in the same binding pocket based on the molecular docking result. The interactions and contributions of key amino acid residues were also characterized. This research provides evidence that TrufOBP4 might participate in the chemoreception of volatile compounds from inflorescences of A. catechu and can contribute to the integrated management of T. rufivena.

SELECTION OF CITATIONS
SEARCH DETAIL
...