Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(10): e0221635, 2019.
Article in English | MEDLINE | ID: mdl-31600213

ABSTRACT

Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients. To gain a better understanding if JAK2V617F is required for maintenance of myeloproliferative disease once it has evolved, we generated a conditional inducible transgenic JAK2V617F mouse model using the SCL-tTA-2S tet-off system. Our model corroborates that expression of JAK2V617F in hematopoietic stem and progenitor cells recapitulates key hallmarks of human myeloproliferative neoplasms, and exhibits gender differences in disease manifestation. The disease was found to be transplantable, and importantly, reversible when transgenic JAK2V617F expression was switched off. Our results indicate that mutant JAK2V617F-specific inhibitors should result in profound disease modification by disabling the myeloproliferative clone bearing mutant JAK2.


Subject(s)
Gene Expression Regulation , Hematopoietic Stem Cells , Janus Kinase 2 , Myeloproliferative Disorders , Transgenes , Amino Acid Substitution , Animals , Disease Models, Animal , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Janus Kinase 2/biosynthesis , Janus Kinase 2/genetics , Mice , Mice, Transgenic , Mutation, Missense , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology
2.
Clin Cancer Res ; 19(22): 6230-41, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24081976

ABSTRACT

PURPOSE: The myeloproliferative neoplasm myelofibrosis is characterized by frequent deregulation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, and JAK inhibitors were shown to reduce splenomegaly and ameliorate disease-related symptoms. However, the mutant clone and bone marrow fibrosis persist in the majority of patients. Using preclinical models, we explored whether JAK and pan-deacetylase inhibitor combination yielded additional benefits. EXPERIMENTAL DESIGN: The combination of the JAK1/2 inhibitor ruxolitinib and panobinostat was investigated using two different mouse models of JAK2(V617F)-driven disease. A Ba/F3 JAK2(V617F) cell-driven leukemic disease model was used to identify tolerated and efficacious doses. The drugs were then evaluated alone and in combination in a mouse model of myeloproliferative neoplasm-like disease based on transplantation of bone marrow transduced with a retrovirus expressing JAK2(V617F). Exposures were determined in blood and tissues, and phosphorylated STAT5 and acetylated histone H3 pharmacodynamic readouts were assessed in spleen and bone marrow. Histologic analysis was conducted on spleen and bone marrow, including staining of reticulin fibers in the latter organ. RESULTS: The combination of ruxolitinib and panobinostat was found to have a more profound effect on splenomegaly, as well as on bone marrow and spleen histology, compared with either agent alone, and the analysis of pharmacodynamic readouts showed that ruxolitinib and panobinostat have nonoverlapping and complementary effects. CONCLUSION: Combining JAK1/2 and pan-deacetylase inhibitors was fairly well tolerated and resulted in improved efficacy in mouse models of JAK2(V617F)-driven disease compared with the single agents. Thus, the combination of ruxolitinib and panobinostat may represent a promising novel therapeutic modality for myeloproliferative neoplasms.


Subject(s)
Hydroxamic Acids/therapeutic use , Indoles/therapeutic use , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Primary Myelofibrosis/drug therapy , Pyrazoles/therapeutic use , Acetylation , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Disease Models, Animal , Histone Deacetylase Inhibitors/adverse effects , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/drug effects , Histones/metabolism , Hydroxamic Acids/adverse effects , Indoles/adverse effects , Janus Kinase 1/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Nitriles , Panobinostat , Polycythemia Vera/drug therapy , Pyrazoles/adverse effects , Pyrimidines , Reticulin/analysis , STAT5 Transcription Factor/drug effects , STAT5 Transcription Factor/metabolism , Spleen/cytology , Spleen/metabolism , Splenomegaly/drug therapy , Thrombocytosis/drug therapy
3.
Cancer Discov ; 2(6): 512-523, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22684457

ABSTRACT

Janus kinase (JAK) inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms, and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type I binding mode can lead to an increase in JAK activation loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type II inhibition acts in the opposite manner, leading to a loss of activation loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation loop may or may not be elicited.


Subject(s)
Janus Kinases/antagonists & inhibitors , Janus Kinases/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Binding Sites , Cell Line, Tumor , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/chemistry , Mice , Phosphorylation/drug effects , Protein Binding , Protein Structure, Tertiary , STAT5 Transcription Factor/metabolism
4.
BMC Cancer ; 11: 24, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21247487

ABSTRACT

BACKGROUND: The JAK2V617F mutation plays a major role in the pathogenesis of myeloproliferative neoplasms and is found in the vast majority of patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia or from primary myelofibrosis. The V617F mutation is thought to provide hematopoietic stem cells and myeloid progenitors with a survival and proliferation advantage. It has previously been shown that activated JAK2 promotes cell survival by upregulating the anti-apoptotic STAT5 target gene Bcl-xL. In this study, we have investigated the role of additional apoptotic players, the pro-apoptotic protein Bim as well as the anti-apoptotic protein Mcl-1. METHODS: Pharmacological inhibition of JAK2/STAT5 signaling in JAK2V617F mutant SET-2 and MB-02 cells was used to study effects on signaling, cell proliferation and apoptosis by Western blot analysis, WST-1 proliferation assays and flow cytometry. Cells were transfected with siRNA oligos to deplete candidate pro- and anti-apoptotic proteins. Co-immunoprecipitation assays were performed to assess the impact of JAK2 inhibition on complexes of pro- and anti-apoptotic proteins. RESULTS: Treatment of JAK2V617F mutant cell lines with a JAK2 inhibitor was found to trigger Bim activation. Furthermore, Bim depletion by RNAi suppressed JAK2 inhibitor-induced cell death. Bim activation following JAK2 inhibition led to enhanced sequestration of Mcl-1, besides Bcl-xL. Importantly, Mcl-1 depletion by RNAi was sufficient to compromise JAK2V617F mutant cell viability and sensitized the cells to JAK2 inhibition. CONCLUSIONS: We conclude that Bim and Mcl-1 have key opposing roles in regulating JAK2V617F cell survival and propose that inactivation of aberrant JAK2 signaling leads to changes in Bim complexes that trigger cell death. Thus, further preclinical evaluation of combinations of JAK2 inhibitors with Bcl-2 family antagonists that also tackle Mcl-1, besides Bcl-xL, is warranted to assess the therapeutic potential for the treatment of chronic myeloproliferative neoplasms.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Apoptosis/physiology , Janus Kinase 2/metabolism , Membrane Proteins/physiology , Proto-Oncogene Proteins c-bcl-2/physiology , Proto-Oncogene Proteins/physiology , Amino Acid Substitution , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Blotting, Western , Caspase Inhibitors , Caspases/metabolism , Cell Line , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/physiology , Flow Cytometry , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Myeloid Cell Leukemia Sequence 1 Protein , Phosphorylation/drug effects , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Quinoxalines/pharmacology , RNA Interference , Signal Transduction/drug effects
5.
BMC Chem Biol ; 9: 1, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-19128485

ABSTRACT

BACKGROUND: Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis. RESULTS: Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1) inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1. CONCLUSION: The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations.

SELECTION OF CITATIONS
SEARCH DETAIL
...