Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 135(5): 1637-1656, 2022 May.
Article in English | MEDLINE | ID: mdl-35217878

ABSTRACT

KEY MESSAGE: Rx3 encodes a typical CC-NBS-LRR resistance protein and confers the resistance to Xanthomonas euvesicatoria pv. euvesicatoria race T1 causing bacterial spot in tomato. Bacterial spot caused by at least four species of Xanthomonas is an epidemic disease severely affecting tomato production worldwide. The use of resistant cultivars is an economical and effective approach to control the disease. An unimproved tomato breeding line Hawaii 7988 has been considered as the most reliable source for resistance to X. euvesicatoria pv. euvesicatoria race T1, and the Rx3 locus located at a 4.53-Mb region on chromosome 5 (SL4.0) is the major locus for resistance to race T1 in this line. In the current study, the Rx3 locus was firstly located to a 1.05-Mb region based on comparisons of marker polymorphisms between the susceptible line Ohio 88119 and resistant lines Hawaii 7998, Ohio 9834 and FG02-7530. Using recombinant inbred lines (F5:6, F6:7, and F7:8) derived from a cross between Ohio 88119 and Ohio 9834, the Rx3 locus was finally mapped to a 64.3-kb interval between markers MG-Rx3-4 and MG-Rx3-A6. The Solyc05g053980 gene, designated as Rx3, encoding a coiled-coil nucleotide-binding leucine-rich repeat protein was considered as the candidate for the Rx3 locus. Expression of the gene could be induced by the infection of race T1 strain. Knockout of the Solyc05g053980 gene through CRISPR/Cas9 editing system in the resistant line FG02-7530 decreased resistance to race T1 strain. These results provide a close step for understanding the resistance mechanism to race T1 in Hawaii 7998 and guide tomato breeders accordingly to improve bacterial spot disease resistance in tomato.


Subject(s)
Solanum lycopersicum , Xanthomonas , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology
2.
Hortic Res ; 8(1): 30, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33518716

ABSTRACT

Solanum lycopersicum var. cerasiforme accession PI 114490 has broad-spectrum resistance to bacterial spot caused by several species of Xanthomonas. Resistance is quantitatively inherited, and a common quantitative trait locus QTL-11B on chromosome 11 has been identified previously. In this study, the SlPub24 gene was characterized in QTL-11B. SlPub24 in PI 114490 was upregulated by infection with X. euvesicatoria pv. perforans race T3, but its transcription was low in the susceptible line OH 88119 whether or not it was infected by the pathogen. The differential expression of SlPub24 between PI 114490 and OH 88119 was due to great sequence variation in the promoter region. The promoter of SlPub24 in OH 88119 had very low activity and did not respond to pathogen infection. Transgenic lines of OH 88119 overexpressing SlPub24 isolated from PI 114490 showed significantly enhanced resistance, while mutants of Slpub24 generated by CRISPR/Cas9 editing showed more susceptibility to race T3 and to other races. The mutants also showed spontaneous cell death in leaves. The expression of the salicylic acid (SA) pathway gene phenylalanine ammonia-lyase (PAL) and signaling-related genes pathogenesis-related (PR1) and nonexpresser of PR1 (NPR1) were influenced by SlPub24. The content of SA in tomato plants was consistent with the level of SlPub24 expression. Furthermore, SlPUB24 interacted with the cell wall protein SlCWP and could regulate the degradation of SlCWP. The expression levels of SlCWP and SlCWINV1, a cell wall invertase gene, showed opposite patterns during pathogen infection. The activity of SlCWINV1 was lower in mutants than in PI 114490. The results are discussed in terms of the roles of the abovementioned genes, and a potential model for SlPUB24-mediated resistance to bacterial spot is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...