Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.958
Filter
1.
Chin J Integr Med ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958885

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease that has been prevalent since December 2019. Chinese medicine (CM) has demonstrated its unique advantages in the fight against COVID-19 in the areas of disease prevention, improvement of clinical symptoms, and control of disease progression. This review summarized the relevant material components of CM in the treatment of COVID-19 by searching the relevant literature and reports on CM in the treatment of COVID-19 and combining with the physiological and pathological characteristics of the novel coronavirus. On the basis of sorting out experimental methods in vivo and in vitro, the mechanism of herb action was further clarified in terms of inhibiting virus invasion and replication and improving related complications. The aim of the article is to explore the strengths and characteristics of CM in the treatment of COVID-19, and to provide a basis for the research and scientific, standardized treatment of COVID-19 with CM.

2.
Sci Total Environ ; : 174392, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955277

ABSTRACT

Neonicotinoid pollution has increased rapidly and globally in recent years, posing significant risks to agricultural areas. Quantifying use and emission, transport and fate of these contaminants, and risks is critical for proper management of neonicotinoids in river basin. This study elucidates use and emissions of neonicotinoid pesticides in a typical large-scale agriculture basin of China, the Pearl River Basin, as well as the resulting agricultural non-point source pollution and related ecological risks using market surveys, data analysis, and the Soil and Water Assessment Tool. Neonicotinoid use in the basin was estimated at 1361 t in 2019, of which 83.1 % was used in agriculture. After application, approximately 99.1 t neonicotinoids were transported to the Pearl River, accounting for 7.2 % of the total applied. Estimated aquatic concentrations of neonicotinoids showed three seasonal peaks. Several distinct groups of neonicotinoid chemicals can be observed in the Pearl River, as estimated by the model. An estimated 3.9 % of the neonicotinoids used were transported to the South China Sea. Based on the present risk assessment result, several neonicotinoids posed risks to aquatic organism. Therefore, the use of alternative products and/or reduced use is deemed necessary. This study provides novel insights into the fate and ecological risks of neonicotinoid insecticides in large-scale watersheds, and underscores the need for greater efficiency of use and extensive environmental monitoring.

3.
Front Physiol ; 15: 1384426, 2024.
Article in English | MEDLINE | ID: mdl-38952867

ABSTRACT

Alternative splicing is an essential post-transcriptional regulatory mechanism that diversifies gene function by generating multiple protein isoforms from a single gene and act as a crucial role in insect environmental adaptation. Olfaction, a key sense for insect adaptation, relies heavily on the antennae, which are the primary olfactory organs expressing most of the olfactory genes. Despite the extensive annotation of olfactory genes within insect antennal tissues facilitated by high-throughput sequencing technology advancements, systematic analyses of alternative splicing are still relatively less. In this study, we focused on the oriental fruit fly (Bactrocera dorsalis), a significant pest of fruit crops. We performed a detailed analysis of alternative splicing in its antennae by utilizing the full-length transcriptome of its antennal tissue and the insect's genome. The results revealed 8600 non-redundant full-length transcripts identified in the oriental fruit fly antennal full-length transcriptome, spanning 4,145 gene loci. Over 40% of these loci exhibited multiple isoforms. Among these, 161 genes showed sex-biased isoform switching, involving seven different types of alternative splicing. Notably, events involving alternative transcription start sites (ATSS) and alternative transcription termination sites (ATTS) were the most common. Of all the genes undergoing ATSS and ATTS alternative splicing between male and female, 32 genes were alternatively spliced in protein coding regions, potentially affecting protein function. These genes were categorized based on the length of the sex-biased isoforms, with the highest difference in isoform fraction (dIF) associated with the ATSS type, including genes such as BdorABCA13, BdorCAT2, and BdorTSN3. Additionally, transcription factor binding sites for doublesex were identified upstream of both BdorABCA13 and BdorCAT2. Besides being expressed in the antennal tissues, BdorABCA13 and BdorCAT2 are also expressed in the mouthparts, legs, and genitalia of both female and male adults, suggesting their functional diversity. This study reveals alternative splicing events in the antennae of Bactrophora dorsalis from two aspects: odorant receptor genes and other types of genes expressed in the antennae. This study not only provides a research foundation for understanding the regulation of gene function by alternative splicing in the oriental fruit fly but also offers new insights for utilizing olfaction-based behavioral manipulation techniques to manage this pest.

4.
Cancer Manag Res ; 16: 703-710, 2024.
Article in English | MEDLINE | ID: mdl-38948682

ABSTRACT

Purpose: To explore the effect of DSG2 on the growth of cervical cancer cells and its possible regulatory mechanism. Methods: The expression levels and survival prognosis of DSG2 and ADAM17 in cervical squamous cell carcinoma tissues and adjacent normal tissues were analyzed by bioinformatics. CCK-8 assay, colony formation assay and Transwell assay were used to detect the effects of DSG2 on the proliferative activity, colony formation ability and migration ability of SiHa and Hela cells. The effect of DSG 2 on the level of ADAM17 transcription and translation was detected by qPCR and Western blot experiments. The interaction between DSG2 and c-MYC was detected by immunocoprecipitation. c-MYC inhibitors were used in HeLa cells overexpressing DSG2 to analyze the effects of DSG2 and c-MYC on proliferation, colony formation and migration of Hela cells, as well as the regulation of ADAM17 expression. Results: DSG2 was highly expressed in cervical squamous cell carcinoma compared with normal tissues (P<0.05), and high DSG2 expression suggested poor overall survival (P<0.05). After DSG2 knockdown, the proliferative activity, colony formation and migration ability of SiHa and Hela cells were significantly decreased (P<0.05). Compared with adjacent normal tissues, ADAM17 was highly expressed in cervical squamous cell carcinoma (P<0.05), and high ADAM17 expression suggested poor overall survival in cervical cancer patients (P<0.05). The results of immunocoprecipitation showed the interaction between DSG2 and c-MYC. Compared with DSG2 overexpression group, DSG2 overexpression combined with c-MYC inhibition group significantly decreased cell proliferation, migration and ADAM17 expression (P < 0.05). Conclusion: DSG2 is highly expressed in cervical cancer, and inhibition of DSG2 expression can reduce the proliferation and migration ability of cervical cancer cells, which may be related to the regulation of ADAM17 expression through c-MYC interaction.

6.
Nano Lett ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953881

ABSTRACT

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.

7.
Accid Anal Prev ; 204: 107648, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38833986

ABSTRACT

Illegal lane-transgressing is a typical aberrant riding behavior of riders of two-wheelers, i.e., motorcycles, bicycles, and e-bikes, which is highly frequent in accident reports. However, there is insufficient attention to this behavior at present. This study aims to explore the socio-psychologic factors that influence the illegal lane-transgressing behavior of two-wheeler riders when overtaking. For this purpose, a questionnaire was first composed. The questionnaire included the behavioral intention of two-wheeler riders towards illegal overtaking behavior and five influencing factors: safety knowledge, descriptive norms, injunctive norms, perceived behavior control, and risk perception. Second, a survey was conducted on different two-wheeler riders in Xi'an. Third, various types of two-wheelers were analyzed jointly and separately by structural equation models and analyses of variance. Results show that e-bike riders were more similar to motorcycle riders in behavioral intentions, with their risk perception weaker than other riders. Descriptive norms and perceived behavior control played the most significant roles in the structural equation model. It was also found that two-wheeler riders with a car license had better traffic safety performance. Based on the above results, it is recommended that attention be paid to illegal lane-transgression in the process of law enforcement and education, and a higher level of safety training should be provided for two-wheeler riders.


Subject(s)
Accidents, Traffic , Intention , Motorcycles , Humans , Motorcycles/legislation & jurisprudence , Male , Adult , Female , Surveys and Questionnaires , Accidents, Traffic/prevention & control , Young Adult , Bicycling , Automobile Driving/legislation & jurisprudence , Automobile Driving/psychology , Safety , Social Norms , China , Middle Aged , Adolescent , Risk-Taking
8.
Lipids Health Dis ; 23(1): 193, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909219

ABSTRACT

BACKGROUNDS: A growing body of evidence has highlighted the interactions of lipids metabolism and immune regulation. Nevertheless, there is still a lack of evidence regarding the causality between lipids and autoimmune diseases (ADs), as well as their possibility as drug targets for ADs. OBJECTIVES: This study was conducted to comprehensively understand the casual associations between lipid traits and ADs, and evaluate the therapeutic possibility of lipid-lowering drug targets on ADs. METHODS: Genetic variants for lipid traits and variants encoding targets of various lipid-lowering drugs were derived from Global Lipid Genetics Consortium (GLGC) and verified in Drug Bank. Summary data of ADs were obtained from MRC Integrative Epidemiology Unit (MER-IEU) database and FinnGen consortium, respectively. The causal inferences between lipid traits/genetic agents of lipid-lowering targets and ADs were evaluated by Mendelian randomization (MR), summary data-based MR (SMR), and multivariable MR (MVMR) analyses. Enrichment analysis and protein interaction network were employed to reveal the functional characteristics and biological relevance of potential therapeutic lipid-lowering targets. RESULTS: There was no evidence of causal effects regarding 5 lipid traits and 9 lipid-lowering drug targets on ADs. Genetically proxied 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibition was associated with a reduced risk of rheumatoid arthritis (RA) in both discovery (OR [odds ratio] = 0.45, 95%CI: 0.32, 0.63, P = 6.79 × 10- 06) and replicate datasets (OR = 0.37, 95%CI: 0.23, 0.61, P = 7.81 × 10- 05). SMR analyses supported that genetically proxied HMGCR inhibition had causal effects on RA in whole blood (OR = 0.48, 95%CI: 0.29, 0.82, P = 6.86 × 10- 03) and skeletal muscle sites (OR = 0.75, 95%CI: 0.56, 0.99, P = 4.48 × 10- 02). After controlling for blood pressure, body mass index (BMI), smoking and drinking alchohol, HMGCR suppression showed a direct causal effect on a lower risk of RA (OR = 0.33, 95%CI: 0.40, 0.96, P = 0.042). CONCLUSIONS: Our study reveals causal links of genetically proxied HMGCR inhibition (lipid-lowering drug targets) and HMGCR expression inhibition with a decreased risk of RA, suggesting that HMGCR may serve as candidate drug targets for the treatment and prevention of RA.


Subject(s)
Autoimmune Diseases , Hypolipidemic Agents , Mendelian Randomization Analysis , Humans , Autoimmune Diseases/genetics , Autoimmune Diseases/drug therapy , Hypolipidemic Agents/therapeutic use , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Polymorphism, Single Nucleotide , Lipids/blood , Protein Interaction Maps/genetics , Hydroxymethylglutaryl CoA Reductases/genetics
9.
Front Neurorobot ; 18: 1374531, 2024.
Article in English | MEDLINE | ID: mdl-38911604

ABSTRACT

The quaternion cubature Kalman filter (QCKF) algorithm has emerged as a prominent nonlinear filter algorithm and has found extensive applications in the field of GNSS/SINS integrated attitude determination and positioning system (GNSS/SINS-IADPS) data processing for unmanned aerial vehicles (UAV). However, on one hand, the QCKF algorithm is predicated on the assumption that the random model of filter algorithm, which follows a white Gaussian noise distribution. The noise in actual GNSS/SINS-IADPS is not the white Gaussian noise but rather a ubiquitous non-Gaussian noise. On the other hand, the use of quaternions as state variables is bound by normalization constraints. When applied directly in nonlinear non-Gaussian system without considering normalization constraints, the QCKF algorithm may result in a mismatch phenomenon in the filtering random model, potentially resulting in a decline in estimation accuracy. To address this issue, we propose a novel Gaussian sum quaternion constrained cubature Kalman filter (GSQCCKF) algorithm. This algorithm refines the random model of the QCKF by approximating non-Gaussian noise with a Gaussian mixture model. Meanwhile, to account for quaternion normalization in attitude determination, a two-step projection method is employed to constrain the quaternion, which consequently enhances the filtering estimation accuracy. Simulation and experimental analyses demonstrate that the proposed GSQCCKF algorithm significantly improves accuracy and adaptability in GNSS/SINS-IADPS data processing under non-Gaussian noise conditions for Unmanned Aerial Vehicles (UAVs).

10.
Environ Res ; 258: 119456, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906445

ABSTRACT

Anaerobic biological treatment technology, especially denitrification and anaerobic ammonia oxidation (anammox) technology as mainstream process, played dominant role in the field of biological wastewater treatment. However, the above process was prone to sludge floating during high load operation and thereby affecting the efficient and stable operation of the system. Excessive production of extracellular polymeric substance (EPS) was considered to be the main reason for anaerobic granular sludge flotation, but the summaries in this area were not comprehensive enough. In this review, the potential mechanisms of denitrification and anammox sludge floatation were discussed from the perspective of granular sludge structural characteristics, nutrient transfer, and microbial flora change respectively, and the corresponding control strategies were also summarized. Finally, this paper indicated that future research on sludge flotation should focus on reducing the negative effects of EPS in sludge particles.

12.
Hepatol Int ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913149

ABSTRACT

BACKGROUND AND AIMS: The efficacy of achieving HBsAg clearance through pegylated interferon (PEG-IFNα) therapy in patients with chronic hepatitis B (CHB) remains uncertain, especially regarding the probability of achieving functional cure among patients with varying baseline HBsAg levels. We aimed to investigate the predictive value of HBsAg quantification for HBsAg seroclearance in CHB patients undergoing PEG-IFNα treatment. METHODS: A systematic search was conducted in PubMed, Embase, and the Cochrane Library up to January 11, 2022. Subgroup analyses were performed for HBeAg-positive and HBeAg-negative patients, PEG-IFNα monotherapy and PEG-IFNα combination therapy, treatment-naive and treatment-experienced patients, and patients with or without liver cirrhosis. RESULTS: This predictive model incorporated 102 studies. The overall HBsAg clearance rates at the end of treatment (EOT) and the end of follow-up (EOF) were 10.6% (95% CI 7.8-13.7%) and 11.1% (95% CI 8.4-14.1%), respectively. Baseline HBsAg quantification was the most significant factor. According to the model, it is projected that when baseline HBsAg levels are 100, 500, 1500, and 10,000 IU/ml, the HBsAg clearance rates at EOF could reach 53.9% (95% CI 40.4-66.8%), 32.1% (95% CI 24.8-38.7%), 14.2% (95% CI 9.8-18.8%), and 7.9% (95% CI 4.2-11.8%), respectively. Additionally, treatment-experienced patients with HBeAg-negative status, and without liver cirrhosis exhibited higher HBsAg clearance rates after PEG-IFNα treatment. CONCLUSION: A successful predictive model has been established to predict the achievement of functional cure in CHB patients receiving PEG-IFNα therapy.

13.
Plant Cell ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916914

ABSTRACT

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one fifth of potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.

14.
Talanta ; 277: 126436, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38901192

ABSTRACT

Cancer cells have a high abundance of hypochlorite compared to normal cells, which can be used as the biomarker for imaging cancer cells and tumor. Developing the tumor-targeting fluorescent probe suitable for imaging hypochlorite in vivo is urgently demanded. In this article, based on xanthene dye with a two-photon excited far-red to NIR emission, a tumor-targeting two-photon fluorescent probe (Biotin-HClO) for imaging basal hypochlorite in cancer cells and tumor was developed. For ClO-, Biotin-HClO (20.0 µM) has a linear response range from 15.0 × 10-8 to 1.1 × 10-5 M with a high selectivity and a high sensitivity, a good detection limit of 50 nM and a 550-fold fluorescence enhancement with high signal-to-noise ratio (20 mM PBS buffer solution with 50 % DMF; pH = 7.4; λex = 605 nm; λem = 635 nm). Morover, Biotin-HClO exhibited excellent performance in monitoring exogenous and endogenous ClO- in cells, and has an outstanding tumor-targeting ability. Subsequently, Biotin-HClO has been applied for imaging ClO- in 4T1 tumor tissue to distinguish from normal tissue. Furthermore, Biotin-HClO was successfully employed for high-contrast imaging 4T1 tumor in mouse based on its tumor-targeting ability. All these results proved that Biotin-HClO is a useful analytical tool to detect ClO- and image tumor in vivo.

15.
J Pharm Pharmacol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836550

ABSTRACT

BACKGROUND: Tongue squamous cell carcinoma (TSCC) exhibits an aggressive biological behavior of lymph node and distant metastasis, which contributes to poorer prognosis and results in tongue function loss or death. In addition to known regulators and pathways of cell migration in TSCC, it is important to uncover pivotal switches governing tumor metastasis. METHODS: Cancer cell migration-associated transcriptional and epigenetic characteristics were profiled in TSCC, and the specific super-enhancers (SEs) were identified. Molecular function and mechanism studies were used to investigate the pivotal switches in TSCC metastasis. RESULTS: Ameboidal-type cell migration-related genes accompanied by transcriptional and epigenetic activity were enriched in TSCC. Meanwhile, the higher-ranked SE-related genes showed significant differences between 43 paired tumor and normal samples from the TCGA TSCC cohort. In addition, key motifs were detected in SE regions, and transcription factor-related expression levels were significantly associated with TSCC survival status. Notably, BATF and ATF3 regulated the expression of ameboidal-type cell migration-related MMP14 by switching the interaction with the SE region. CONCLUSION: SEs and related key motifs transcriptional regulate tumor metastasis-associated MMP14 and might be potential therapeutic targets for TSCC.

16.
Neurochem Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864944

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a challenging treatment landscape, due to its complex pathogenesis and limited availability of clinical drugs. Ferroptosis, an iron-dependent form of programmed cell death (PCD), stands distinct from apoptosis, necrosis, autophagy, and other cell death mechanisms. Recent studies have increasingly highlighted the role of iron deposition, reactive oxygen species (ROS) accumulation, oxidative stress, as well as systemic Xc- and glutamate accumulation in the antioxidant system in the pathogenesis of amyotrophic lateral sclerosis. Therefore, targeting ferroptosis emerges as a promising strategy for amyotrophic lateral sclerosis treatment. This review introduces the regulatory mechanism of ferroptosis, the relationship between amyotrophic lateral sclerosis and ferroptosis, and the drugs used in the clinic, then discusses the current status of amyotrophic lateral sclerosis treatment, hoping to provide new directions and targets for its treatment.

17.
Acta Pharmacol Sin ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937576

ABSTRACT

Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 µM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.

18.
Hellenic J Cardiol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844023

ABSTRACT

OBJECTIVE: We aimed to examine biventricular remodeling and function after Ebstein anomaly (EbA) surgical correction using echocardiographic techniques, particularly, the relations between the biventricular changes and the EbA types. METHODS: From April 2015 to August 2022, 110 patients with EbA were included in this retrospective study based on the Carpentier classification. Echocardiography assessments during the preoperative, early, and mid-term postoperative periods were performed. RESULTS: The 54 patients with types A and B EbA were included in group 1, whereas the 56 patients with types C and D were in group 2. Seventy-eight patients underwent surgical correction of EbA. The median age at operation was 8.8 years. During the mid-term follow-up, only 9.1% of the patients had moderate or severe tricuspid regurgitation. Right ventricular (RV) systolic function worsened in group 2 at discharge (fractional area change: 27.6 ± 11.2 vs. 35.4 ± 11.5 [baseline], P < 0.05; global longitudinal strain: -10.8 ± 4.4 vs. -17.9 ± 4.7 [baseline], P = 0.0001). RV function slowly recovered at a mean of 12 months of follow-up. Regarding left ventricular (LV) and RV systolic function, no statistical difference was found between before and after surgery in group 1. CONCLUSION: A high success rate of surgical correction of EbA, with an encouraging durability of the valve, was noted. Biventricular systolic function was maintained fairly in most patients with types A and B postoperatively. A late increase in RV systolic function after an initial reduction and unchanged LV systolic function were observed in the patients with types C and D postoperatively.

19.
Life Sci ; 351: 122862, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38917872

ABSTRACT

The primary and initial manifestations of hypertension encompass arterial hypoelasticity and histiocyte senescence. Oxidative stress plays a pivotal role in the progression of senescence. Elevated intracellular oxidative stress levels will directly induce cell damage, disrupt normal physiological signal transduction, which can cause mitochondrial dysfunction to accelerate the process of senescence. Alizarin, an anthraquinone active ingredient isolated from Rubia cordifolia L., has a variety of pharmacological effects, including antioxidant, anti-inflammatory and anti-platelet. Nevertheless, its potential in lowering blood pressure (BP) and mitigating hypertension-induced vascular senescence remains uncertain. In this study, we used spontaneously hypertensive rats (SHR) and human umbilical vein endothelial cells (HUVECs) to establish a model of vascular senescence in hypertension. Our aim was to elucidate the mechanisms underpinning the vascular protective effects of Alizarin. By assessing systolic blood pressure (SBP) and diastolic blood pressure (DBP), H&E staining, SA-ß-Gal staining, vascular function, oxidative stress levels, calcium ion concentration and mitochondrial membrane potential, we found that Alizarin not only restored SBP and increased endothelium-dependent relaxation (EDR) in SHR, but also inhibited oxidative stress-induced mitochondrial damage and significantly delayed the vascular senescence effect in hypertension, and the mechanism may be related to the activation of VEGFR2/eNOS signaling pathway.


Subject(s)
Anthraquinones , Antihypertensive Agents , Cellular Senescence , Human Umbilical Vein Endothelial Cells , Hypertension , Mitochondria , Nitric Oxide Synthase Type III , Oxidative Stress , Rats, Inbred SHR , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2 , Oxidative Stress/drug effects , Animals , Humans , Rats , Mitochondria/metabolism , Mitochondria/drug effects , Anthraquinones/pharmacology , Cellular Senescence/drug effects , Antihypertensive Agents/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/metabolism , Hypertension/metabolism , Hypertension/drug therapy , Vascular Endothelial Growth Factor Receptor-2/metabolism , Signal Transduction/drug effects , Male , Blood Pressure/drug effects , Rats, Inbred WKY
20.
Acta Pharmacol Sin ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942954

ABSTRACT

C/EBP homologous protein (CHOP) triggers the death of multiple cancers via endoplasmic reticulum (ER) stress. However, the function and regulatory mechanism of CHOP in liver cancer remain elusive. We have reported that late endosomal/lysosomal adapter, mitogen-activated protein kinase and mTOR activator 5 (LAMTOR5) suppresses apoptosis in various cancers. Here, we show that the transcriptional and posttranscriptional inactivation of CHOP mediated by LAMTOR5 accelerates liver cancer growth. Clinical bioinformatic analysis revealed that the expression of CHOP was low in liver cancer tissues and that its increased expression predicted a good prognosis. Elevated CHOP contributed to destruction of LAMTOR5-induced apoptotic suppression and proliferation. Mechanistically, LAMTOR5-recruited DNA methyltransferase 1 (DNMT1) to the CpG3 region (-559/-429) of the CHOP promoter and potentiated its hypermethylation to block its interaction with general transcription factor IIi (TFII-I), resulting in its inactivation. Moreover, LAMTOR5-enhanced miR-182/miR-769 reduced CHOP expression by targeting its 3'UTR. Notably, lenvatinib, a first-line targeted therapy for liver cancer, could target the LAMTOR5/CHOP axis to prevent liver cancer progression. Accordingly, LAMTOR5-mediated silencing of CHOP via the regulation of ER stress-related apoptosis promotes liver cancer growth, providing a theoretical basis for the use of lenvatinib for the treatment of liver cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...