Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Bull (Beijing) ; 66(24): 2516-2527, 2021 12 30.
Article in English | MEDLINE | ID: mdl-36654211

ABSTRACT

Asian dust storms have long been a major environmental concern in China, affecting the lives of about one billion people. However, it is unclear whether the mechanisms responsible for Asian dust storms during the Holocene varied on different timescales, and thus it is unclear whether there was a shift from a natural forcing to an anthropogenic forcing of dust storms. We reconstructed a high-resolution Holocene record of dust storms from the sediments of an undisturbed alpine lake on the Chinese Loess Plateau. We found that Asian dust storm activity generally increased during the Holocene, with the largest fluctuations occurring during the past 2000 years. The increase in dust storm activity was in contrast to the decrease in East Asian winter monsoon (EAWM) intensity during the Holocene, indicating that the EAWM played a limited role in modulating dust storms. By contrast, the increase in dust storms corresponded to a decrease in EASM precipitation. This demonstrates that EASM precipitation was the dominant control of dust storm activity on a millennial timescale, because decreased EASM precipitation expanded the desert area and thus increased the dust storm activity. The increasing intensity of human activity in the region since the Bronze Age resulted in an acceleration of dust storm activity against the background of decreased EASM precipitation. As human disturbance continued to intensify, beginning at least at ~2 cal ka BP, increased dust storms were closely linked to increasing human populations in the dust source regions, and there is a strong temporal coherence between increased dust storms and higher EASM precipitation. This was completely different from when natural processes are dominant. During that period, fewer dust storms occurred during periods of a strengthened EASM. Therefore, there was a shift from a natural forcing to an anthropogenic forcing of dust storms on a multi-decadal to centennial timescale, and was a mode in which "human activity overtook the EASM as the dominant control of the Earth surface system".


Subject(s)
Dust , Humans , China , Dust/analysis , Seasons
2.
Nat Commun ; 11(1): 992, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080182

ABSTRACT

The Asian monsoon (AM) played an important role in the dynastic history of China, yet it remains unknown whether AM-mediated shifts in Chinese societies affect earth surface processes to the point of exceeding natural variability. Here, we present a dust storm intensity record dating back to the first unified dynasty of China (the Qin Dynasty, 221-207 B.C.E.). Marked increases in dust storm activity coincided with unified dynasties with large populations during strong AM periods. By contrast, reduced dust storm activity corresponded to decreased population sizes and periods of civil unrest, which was co-eval with a weakened AM. The strengthened AM may have facilitated the development of Chinese civilizations, destabilizing the topsoil and thereby increasing the dust storm frequency. Beginning at least 2000 years ago, human activities might have started to overtake natural climatic variability as the dominant controls of dust storm activity in eastern China.

3.
Sci Rep ; 9(1): 985, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30700770

ABSTRACT

It is well known that the Gobi Desert is the dominant source area of the Badain Jaran Desert (BJD) and the Chinese Loess Plateau (CLP). However, due to the absence of quantitative analyses, there are nearly no exact assessments of its actual contribution. Combinations of field investigations, wind tunnel experiments, and wind field analyses revealed that the potential erosion depth on modern Gobi Desert varied between 0.41 and 0.89 mm a-1. Results indicated it would take an average theoretical time of 80.8 ka and 4,475.9 ka to form the current dimensions of the BJD and CLP, respectively, which means the Gobi Desert may provide substantial sand sources to the modern BJD, while its contribution to the loess of modern CLP might be overestimated despite it was the key sources of the CLP in Quaternary.

4.
Sci Rep ; 7(1): 8741, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821858

ABSTRACT

The sources of modern dust aerosols and their emission magnitudes are fundamental for linking dust with climate and environment. Using field sample data, wind tunnel experiments and statistical analysis, we determined the contributions of wadis, gobi (stony desert), lakebeds, riverbeds, and interdunes to modern dust aerosol availability in the three important potential dust sources including the Tarim Basin, Qaidam Basin, and Ala Shan Plateau of China. The results show that riverbeds are the dominant landscape for modern dust aerosol availabilities in the Qaidam Basin, while wadis, gobi, and interdunes are the main landscapes over the Ala Shan Plateau and Tarim Basin. The Ala Shan Plateau and Tarim Basin are potential dust sources in northwestern China, while the Qaidam Basin is not a major source of the modern dust aerosols nowadays, and it is not acting in a significant way to the Loess Plateau presently. Moreover, most of modern dust aerosol emissions from China originated from aeolian processes with low intensities rather than from major dust events.

SELECTION OF CITATIONS
SEARCH DETAIL
...