Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 42(3): 1443-1450, 2021 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-33742941

ABSTRACT

Based on the formation of free radical-hydrated electrons by the activation of sulfite (SO32-), the UV/SO32- process is an advanced reduction process that can reduce pollutants. This study investigated the degradation kinetics, mechanism, influencing factors, and degradation pathways of sodium diatrizoate (DTZ), an iodinated contrasting media, during the UV/SO32- process. The degradation kinetics of DTZ were well fitted by the pseudo-first-order model, the degradation rate of which was higher than that of UV only and UV/H2 O2. The degradation rate of DTZ during the UV/SO32- process was positively correlated with the initial SO32- concentration. Weakly alkaline and alkaline conditions promoted the degradation of DTZ, while organic matter inhibited degradation during the UV/SO32- process. The degradation mechanism included direct photolysis and free radical attack, whereby free radical attack played a more important role than direct photolysis. Sulfite radicals dominated DTZ degradation efficiency, and hydrated electrons controlled the deiodination efficiency. The degradation pathways of DTZ during the UV/SO32- process included substitution, decarboxylation-hydroxylation, and amide bond cleavage.

2.
Huan Jing Ke Xue ; 39(4): 1739-1747, 2018 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-29965000

ABSTRACT

Two sequencing batch reactors were established at bench-scale, with one used as an in-situ sludge ozone-reduction system and the other as a control system. Both systems were continuously operated for 90 days to comparatively investigate the elimination of nine typical antibiotics (i.e., tetracycline, oxytetracycline, doxytetracycline, norfloxacin, ofloxacin, ciprofloxacin, lomefloxacin, enrofloxacin, and azithromycin) during the in-situ sludge ozone-reduction process. Results indicated that the presence of target antibiotics in the influent (100 µg·L-1 each) had an insignificant influence on the removal of COD, total nitrogen, ammonia, and total phosphorus by the activated sludge. The antibiotic concentrations in the effluent of the reduction system remained fairly stable over the entire operation period, and were similar to those in the effluent of the control system; however, the antibiotic concentrations in the sludge of the reduction system were obviously lower than those in the control system sludge. Mass balance calculations revealed that the input and output of target antibiotics gradually approached balance in both the systems. Ozone degradation and excess sludge discharge were the main pathways for target antibiotic removal in the reduction and the control systems, respectively. The influent antibiotics could be degraded by 83% in the sludge ozonation module of the reduction system, while 82% of the influent antibiotics were discharged with excess sludge in the control system. Therefore, the in-situ sludge ozone-reduction process could greatly reduce the release of antibiotics from the activated sludge system, which is of great importance in practice.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Ozone/chemistry , Sewage , Waste Disposal, Fluid/methods , Ammonia , Bioreactors , Nitrogen , Oxygen , Phosphorus
3.
Environ Technol ; 33(10-12): 1101-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22856279

ABSTRACT

Degradation of carbamazepine (CBZ) using ultraviolet (UV), UV/H2O2, Fenton, UV/Fenton and photocatalytic oxidation with TiO2 (UV/TiO2) was studied in deionized water. The five different oxidation processes were compared for the removal kinetics of CBZ. The results showed that all the processes followed pseudo-first-order kinetics. The direct photolysis (UV alone) was found to be less effective than UV/H2O2 oxidation for the degradation of CBZ. An approximate 20% increase in the CBZ removal efficiency occurred with the UV/Fenton reaction as compared with the Fenton oxidation. In the UV/TiO2 system, the kinetics of CBZ degradation in the presence of different concentrations of TiO2 followed the pseudo-first order degradation, which was consistent with the Langmuir-Hinshelwood (L-H) model. On a time basis, the degradation efficiencies ofCBZ were in the following order: UV/Fenton (86.9% +/- 1.7%) > UV/TiO2 (70.4% +/- 4.2%) > Fenton (67.8% +/- 2.6%) > UV/H2O2 (40.65 +/- 5.1%) > UV (12.2% +/- 1.4%). However, the lowest cost was obtained with the Fenton process.


Subject(s)
Carbamazepine/chemistry , Water Pollutants, Chemical/chemistry , Carbamazepine/radiation effects , Hydrogen Peroxide , Iron , Kinetics , Oxidation-Reduction , Photosensitizing Agents , Titanium , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects
4.
J Environ Monit ; 14(7): 1906-13, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22378384

ABSTRACT

With the rapid urbanization and industrialization in China, wastewater treatment in rural areas has become an increasing national concern. The selection of appropriate treatment processes closely based on the actual local status is crucial for the prevention of water quality deterioration in rural areas of China. This study presents a full year survey on the performances of various rural wastewater treatment processes at a county level in eastern China including seven three-chamber septic tanks (ST), five micro-power biological facilities (MP), seven constructed wetlands (CW), three stabilization ponds (SP) and five centralized activated sludge treatment plants (AS). It was found that although ST could remove a notable portion of total suspended solids (TSS) and chemical oxygen demand (COD(Cr)), it was ineffective in reducing nutrients and pathogens. Reliability and stability analyses showed that the centralized AS and decentralized CW processes outperformed the SP and MP processes. There were obvious discrepancies between the mean design concentrations, which ensure that 95% of the effluents meet the discharge standards, and the actual effluent concentrations determined for each process. The expected compliance with the tentatively adopted second-grade discharge standards (GB 18918-2002) was unsatisfactory for most of the water quality parameters examined, indicating an urgent need to design more practical discharge standards for decentralized treatment processes. Based on an overall assessment of reliability, stability and cost-effectiveness, the centralized AS was suitable for densely populated towns while the decentralized CW was suitable for sparsely populated villages.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Water Quality/standards , China , Waste Disposal, Fluid/standards , Waste Disposal, Fluid/statistics & numerical data , Wetlands
5.
Huan Jing Ke Xue ; 30(1): 127-33, 2009 Jan.
Article in Chinese | MEDLINE | ID: mdl-19353869

ABSTRACT

The reactivity of eight classes of 26 extensively used pesticides, namely, organochlorines, thiadiazole, dinitroanaline, acetamides, triazines, uracil and carbamates, with three common disinfectants or oxidants including UV254 (average intensity of 10.8 mW x cm(-2)), ozone (dosage of 4.1 - 6.2 mg x L(-1)) and permanganate (dosage of 15.8 mg x L(-1)) was investigated. The reactions were allowed to proceed for 30 min at pH 7.0 and ambient temperature (25 degrees C +/- 3 degrees C). Results indicate that under the applied experimental conditions, more than 95% of chlorobenzilate, etridiazole, alachlor, butachlor, metolachlor, propachlor, atrazine, simazine, aldicarb, oxamyl and methiocarb could be effectively removed by UV254; and the removal efficiencies of other pesticides were in a range of 12.9%-77.7%. Ozone could completely degrade chloroneb, dichlorvos, bromacil, aldicarb, carbaryl, carbofuran, oxamyl and methiocarb; prometon and aldicarb sulfone were resistant to ozonation; and the removal efficiencies of other pesticides varied from 19.0% to 93.1%. Permanganate could fully degrade dichlorvos, aldicarb and methiocarb; organochlorines, dinitroanaline, thiadiazole, acetamides and other carbamates were resistant to permanganate oxidation; and the removal efficiencies of other pesticides ranged from 16.0% to 88.2%. If the practical dosage applied in drinking water treatment is considered, it is expected that most of the pesticides will be completely degraded by ozone, a few by permanganate, but probably none by UV254 .


Subject(s)
Manganese Compounds/chemistry , Oxides/chemistry , Ozone/chemistry , Pesticides/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Ultraviolet Rays , Water Supply/analysis
6.
J Environ Sci (China) ; 17(2): 271-5, 2005.
Article in English | MEDLINE | ID: mdl-16295904

ABSTRACT

An aerobic bacterium strain, F-3-4, capable of effectively degrading 2, 6-ditert-butylphenol (2, 6-DTBP), was isolated and screened out from an acrylic fiber wastewater and the biofilm in the wastewater treatment facilities. This strain was identified as Alcaligenes sp. through morphological, physiological and biochemical examinations. After cultivation, the strain was enhanced by 26.3% in its degradation capacity for 2,6-DTBP. Results indicated that the strain was able to utilize 2,6-DTBP, lysine, lactamine, citrate, n-utenedioic acid and malic acid as the sole carbon and energy source, alkalinize acetamide, asparagine, L-histidine, acetate, citrate and propionate, but failed to utilize glucose, D-fructose, D-seminose, D-xylose, serine and phenylalanine as the sole carbon and energy source. The optimal growth conditions were determined to be: temperature 37 degrees C, pH 7.0, inoculum size 0.1% and shaker rotary speed 250 r/min. Under the optimal conditions, the degradation kinetics of 2,6-DTBP with an initial concentration of 100 mg/L was studied. Results indicated that 62.4% of 2,6-DTBP was removed after 11 d. The degradation kinetics could be expressed by Eckenfelder equation with a half life of 9.38 d. In addition, the initial concentration of 2,6-DTBP played an important role on the degradation ability of the strain. The maximum initial concentration of 2,6-DTBP was determined to be 200 mg/L. Above this level, the strain was overloaded and exhibited significant inhibition.


Subject(s)
Alcaligenes/metabolism , Phenols/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biodegradation, Environmental , Carbohydrate Metabolism/physiology , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Kinetics , Spectrophotometry, Ultraviolet , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...