Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-493682

ABSTRACT

SARS-CoV-2 variants of concern (VOCs), especially the latest Omicron, have exhibited severe antibody evasion. Broadly neutralizing antibodies with high potency against Omicron are urgently needed for understanding working mechanisms and developing therapeutic agents. In this study, we characterized previously reported F61, which was isolated from convalescent patients infected with prototype SARS-CoV-2, as a broadly neutralizing antibody against all VOCs including Omicron BA.1, BA.1.1, BA.2, BA.3 and BA.4 sublineages by utilizing antigen binding and cell infection assays. We also identified and characterized another broadly neutralizing antibody D2 with epitope distinct from that of F61. More importantly, we showed that a combination of F61 with D2 exhibited synergy in neutralization and protecting mice from SARS-CoV-2 Delta and Omicron BA.1 variants. Cryo-EM structures of the spike-F61 and spike-D2 binary complexes revealed the distinct epitopes of F61 and D2 at atomic level and the structural basis for neutralization. Cryo-EM structure of the Omicron-spike-F61-D2 ternary complex provides further structural insights into the synergy between F61 and D2. These results collectively indicated F61 and F61-D2 cocktail as promising therapeutic antibodies for combating SARS-CoV-2 variants including diverse Omicron sublineages.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-440083

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has precipitated multiple variants resistant to therapeutic antibodies. In this study, 12 high-affinity antibodies were generated from convalescent donors in early outbreaks using immune antibody phage display libraries. Of them, two RBD-binding antibodies (F61 and H121) showed high affinity neutralization against SARS-CoV-2, whereas three S2-target antibodies failed to neutralize SARS-CoV-2. Following structure analysis, F61 identified a linear epitope located in residues G446 -S494, which overlapped with angiotensin-converting enzyme 2 (ACE2) binding sites, while H121 recognized a conformational epitope located on the side face of RBD, outside from ACE2 binding domain. Hence the cocktail of the two antibodies achieved better performance of neutralization to SARS-CoV-2. Importantly, F61 and H121 exhibited efficient neutralizing activity against variants B.1.1.7 and B.1.351, those showed immune escape. Efficient neutralization of F61 and H121 against multiple mutations within RBD revealed a broad neutralizing activity against SARS-CoV-2 variants, which mitigated the risk of viral escape. Our findings defined the basis of therapeutic cocktails of F61 and H121 with broad neutralization and delivered a guideline for the current and future vaccine design, therapeutic antibody development, and antigen diagnosis of SARS-CoV-2 and its novel variants.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20175505

ABSTRACT

BACKGROUNDCoronavirus disease 2019 (COVID-19) triggers distinct patterns of pneumonia progression with multiorgan disease, calling for cell- and/or tissue-type specific host injury markers. METHODSAn integrated hypothesis-free single biomarker analysis framework was performed on nasal swabs (n = 484) from patients with COVID-19 in GSE152075. The origin of candidate biomarker was assessed in single-cell RNA data (GSE145926). The candidate biomarker was validated in a cross-sectional cohort (n = 564) at both nucleotide and protein levels. RESULTSPhospholipase A2 group VII (PLA2G7) was identified as a candidate biomarker in COVID-19. PLA2G7 was predominantly expressed by proinflammatory macrophages in lungs emerging with progression of COVID-19. In the validation stage, PLA2G7 was found in patients with COVID-19 and pneumonia, especially in severe pneumonia, rather than patients suffered mild H1N1 influenza infection. Up to 100% positive rates of PLA2G7 were positively correlated with not only viral loads in patients with COVID-19 but also severity of pneumonia in non-COVID-19 patients. Although Ct values of PLA2G7 in severe pneumonia was significantly lower than that in moderate pneumonia (P = 7.2e-11), no differences were observed in moderate pneumonia with COVID-19 between severe pneumonia without COVID-19 (P = 0.81). Serum protein levels of PLA2G7, also known as lipoprotein-associated phospholipase A2 (Lp-PLA2), were further found to be elevated and beyond the upper limit of normal in patients with COVID-19, especially among the re-positive patients. CONCLUSIONSWe firstly identified and validated PLA2G7, a biomarker for cardiovascular diseases (CVDs), was abnormally enhanced in COVID-19 patients at both nucleotide and protein aspects. These findings provided indications into the prevalence of cardiovascular involvements seen in COVID-19 patients. PLA2G7 could be a hallmark of COVID-19 for monitoring disease progress and therapeutic response. FUNDINGThis study was supported by grants from China Mega-Projects for Infectious Disease (2018ZX10711001), National Natural Science Foundation of China (82041023).

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-806048

ABSTRACT

Objective@#To establish a fluorescent bead-based multiplex assay for the simultaneous detection of seven viral diseases endemic in Africa.@*Methods@#The genomic sequences of the viral pathogens causing Rift valley fever, Yellow fever, Marburg virus disease, Ebola virus disease, Lassa fever, Crimean-Congo hemorrhagic fever and Chikungunya fever were compared, PCR detection target fragments were selected, and amplification primers and hybrid probes were designed. The reference samples of related pathogens were prepared by chemical synthesis of DNA and in vitro transcription RNA. The sensitivity and stability of the detection method were evaluated. The specificity was evaluated by testing 30 samples of suspected dengue fever, and hantavirus diseases, and 32 healthy human blood samples.@*Results@#The fluorescent bead-based multiplex assay could specifically detect the corresponding pathogen, the detection limit was at a range of 102-105 copies/ μl, the specificity was 100%, and the intra-assay coefficient of variation was below 12%, and the inter-assay coefficient of variation was below 15%.@*Conclusions@#A fluorescent bead-based multiplex PCR assay for the simultaneous detection of seven viral diseases endemic in Africa was established, which may provide a new choice for the screening of suspected infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...