Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 275(Pt 1): 133659, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969045

ABSTRACT

The age-related alterations in pituitary function, including changes in prolactin (PRL) production contributes to the systemic susceptibility to age-related diseases. Our previous research has shown the involvement of Nrg1 in regulating the expression and secretion of PRL. However, the precise role of Nrg1 in mitigating the senescence of pituitary lactotrophs and the underlying mechanisms are yet to be comprehended. Here, data from the GEPIA database was used to evaluate the association between transient receptor potential cation channel subfamily M member 8 (TRPM8) and PRL in normal human pituitary tissues, followed by immunofluorescence verification using a human pituitary tissue microarray. TRPM8 levels showed a significant positive association with PRL expression in normal human pituitary tissues, and both TRPM8 and PRL levels declined during aging, suggesting that TRPM8 may regulate pituitary aging by affecting PRL production. It was also found that treatment with exogenous neuregulin 1 (Nrg1) markedly delayed the senescence of GH3 cells (rat lactotroph cell line) generated by D-galactose (D-gal). In addition, melatonin reduced the levels of senescence-related markers in senescent pituitary cells by promoting Nrg1 / ErbB4 signaling, stimulating PRL expression and secretion. Further investigation showed that Nrg1 attenuated senescence in pituitary cells by increasing TRPM8 expression. Downregulation of TRPM8 activation eliminated Nrg1-mediated amelioration of pituitary cell senescence. These findings demonstrate the critical function of Nrg1 / ErbB signaling in delaying pituitary lactotroph cell senescence and enhancing PRL production via promoting TRPM8 expression under the modulation of melatonin.

2.
Brain Sci ; 14(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38671952

ABSTRACT

Parkinson's disease (PD) is characterized not only by motor symptoms but also by non-motor dysfunctions, such as olfactory impairment; the cause is not fully understood. Our study suggests that neuronal loss and inflammation in brain regions along the olfactory pathway, such as the olfactory bulb (OB) and the piriform cortex (PC), may contribute to olfactory dysfunction in PD mice, which might be related to the downregulation of the trace amine-associated receptor 1 (TAAR1) in these areas. In the striatum, although only a decrease in mRNA level, but not in protein level, of TAAR1 was detected, bioinformatic analyses substantiated its correlation with PD. Moreover, we discovered that neuronal death and inflammation in the OB and the PC in PD mice might be regulated by TAAR through the Bcl-2/caspase3 pathway. This manifested as a decrease of anti-apoptotic protein Bcl-2 and an increase of the pro-apoptotic protein cleaved caspase3, or through regulating astrocytes activity, manifested as the increase of TAAR1 in astrocytes, which might lead to the decreased clearance of glutamate and consequent neurotoxicity. In summary, we have identified a possible mechanism to elucidate the olfactory dysfunction in PD, positing neuronal damage and inflammation due to apoptosis and astrocyte activity along the olfactory pathway in conjunction with the downregulation of TAAR1.

3.
Brain Sci ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38539626

ABSTRACT

Increasing evidence suggests that the gut microbiota may represent potential strategies for Parkinson's disease (PD) treatment. Our previous research revealed a decreased abundance of Akkermansia muciniphila (Akk) in PD mice; however, whether Akk is beneficial to PD is unknown. To answer this question, the mice received MPTP intraperitoneally to construct a subacute model of PD and were then supplemented with Akk orally for 21 consecutive days. Motor function, dopaminergic neurons, neuroinflammation, and neurogenesis were examined. In addition, intestinal inflammation, and serum and fecal short-chain fatty acids (SCFAs) analyses, were assessed. We found that Akk treatment effectively inhibited the reduction of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and partially improved the motor function in PD mice. Additionally, Akk markedly alleviated neuroinflammation in the striatum and hippocampus and promoted hippocampal neurogenesis. It also decreased the level of colon inflammation. Furthermore, these aforementioned changes are mainly accompanied by alterations in serum and fecal isovaleric acid levels, and lower intestinal permeability. Our research strongly suggests that Akk is a potential neuroprotective agent for PD therapy.

4.
Exp Ther Med ; 27(2): 72, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38234625

ABSTRACT

In contrast to prior findings that have illustrated the conversion of non-neuronal cells into functional neurons through the specific targeting of polypyrimidine tract-binding protein 1 (PTBP1), accumulated evidence suggests the impracticality of inducing neuronal transdifferentiation through suppressing PTBP1 expression in pathological circumstances. Therefore, the present study explored the effect of knocking down PTBP1 under physiological conditions on the transdifferentiation of mouse hippocampal neuron HT22 cells and mouse astrocyte (MA) cells. A total of 20 µM negative control small interfering (si)RNA and siRNA targeting PTBP1 were transfected into HT22 and MA cells using Lipo8000™ for 3 and 5 days, respectively. The expression of early neuronal marker ßIII-Tubulin and mature neuronal markers NeuN and microtubule-associated protein 2 (MAP2) were detected using western blotting. In addition, ßIII-tubulin, NeuN and MAP2 were labeled with immunofluorescence staining to evaluate neuronal cell differentiation in response to PTBP1 downregulation. Under physiological conditions, no significant changes in the expression of ßIII-Tubulin, NeuN and MAP2 were found after 3 and 5 days of knockdown of PTBP1 protein in both HT22 and MA cells. In addition, the immunofluorescence staining results showed no apparent transdifferentiation in maker levels and morphology. The results suggested that the knockdown of PTBP1 failed to induce neuronal differentiation under physiological conditions.

5.
J Neuroimmune Pharmacol ; 18(4): 610-627, 2023 12.
Article in English | MEDLINE | ID: mdl-37782386

ABSTRACT

Serotonergic dysfunction is related to both motor and nonmotor symptoms in Parkinson's disease (PD). As a 5-HT receptor, 5-HT4 receptor (5-HT4R) is well-studied and already-used in clinical therapy of constipation, which is a typical non-motor symptom in PD. In this study, we investigated the role of 5-HT4R as a regulator of gut function in MPTP-induced acute PD mice model. Daily intraperitoneal injection of GR 125487 (5-HT4R antagonist) was administered 3 days before MPTP treatment until sacrifice. Seven days post-MPTP treatment, feces were collected and gastrointestinal transit time (GITT) was measured, 8 days post-MPTP treatment, behavioral tests were performed, and then animals were sacrificed for the further analysis. We found GR 125487 pretreatment not only increased GITT, but also aggravated MPTP-induced motor bradykinesia. In addition, GR 125487 pretreatment exacerbated the loss of dopaminergic neurons probably by suppressing JAK2/PKA/CREB signaling pathway and increased reactive glia and neuroinflammation in the striatum. 16 S rRNA sequencing of fecal microbiota showed that GR 125487 pretreatment altered the composition of gut microbiota, in which the abundance of Akkermansia muciniphila and Clostridium clostridioforme was increased, whereas that of Parabacteroides distasonis and Bacteroides fragilis was decreased, which are closely associated with inflammation condition. Taken together, we demonstrated that GR 125487 pretreatment exacerbates MPTP-induced striatal neurodegenerative processes possibly via the JAK2/PKA/CREB pathway and neuroinflammation by altering gut microbiota composition. In the microbiota-gut-brain axis of PD, 5-HT4R should be further explored and might serve as a target for PD diagnosis and treatment.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Receptors, Serotonin, 5-HT4 , Gastrointestinal Microbiome/physiology , Neuroinflammatory Diseases , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Dopaminergic Neurons/metabolism
6.
Neurotherapeutics ; 20(5): 1405-1426, 2023 09.
Article in English | MEDLINE | ID: mdl-37596429

ABSTRACT

Accumulating data support a crucial role of gut microbiota in Parkinson's disease (PD). However, gut microbiota vary with age and, thus, will affect PD in an age-dependent, but unknown manner. We examined the effects of fecal microbiota transplantation (FMT) pretreatment, using fecal microbiota from young (7 weeks) or aged mice (23 months), on MPTP-induced PD model. Motor function, pathological changes, striatal neurotransmitters, neuroinflammation, gut inflammation and gut permeability were examined. Gut microbiota composition and metabolites, namely short-chain fatty acids (SCFAs), were analyzed. Neurogenesis was also evaluated by measuring the number of doublecortin-positive (DCX+) neurons and Ki67-positive (Ki67+) cells in the hippocampus. Expression of Cd133 mRNA, a cellular stemness marker, in the hippocampus was also examined. Mice who received FMT from young mice showed MPTP-induced motor dysfunction, and reduction of striatal dopamine (DA), dopaminergic neurons and striatal tyrosine hydroxylase (TH) levels. Interestingly and unexpectedly, mice that received FMT from aged mice showed recovery of motor function and rescue of dopaminergic neurons and striatal 5-hydroxytryptamine (5-HT), as well as decreased DA metabolism after MPTP challenge. Further, they showed improved metabolic profiling and a decreased amount of fecal SCFAs. High-throughput sequencing revealed that FMT remarkably reshaped the gut microbiota of recipient mice. For instance, levels of genus Akkermansia and Candidatus Saccharimonas were elevated in fecal samples of recipient mice receiving aged microbiota (AM + MPTP mice) than YM + MPTP mice. Intriguingly, both young microbiota and aged microbiota had no effect on neuroinflammation, gut inflammation or gut permeability. Notably, AM + MPTP mice showed a marked increase in DCX+ neurons, as well as Ki67+ cells and Cd133 expression in the hippocampal dentate gyrus (DG) compared to YM + MPTP mice. These results suggest that FMT from aged mice augments neurogenesis, improves motor function and restores dopaminergic neurons and neurotransmitters in PD model mice, possibly through increasing neurogenesis.


Subject(s)
Fecal Microbiota Transplantation , Parkinson Disease , Animals , Mice , Neuroinflammatory Diseases , Ki-67 Antigen , Inflammation , Dopaminergic Neurons , Neurogenesis
7.
J Integr Neurosci ; 22(4): 96, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37519170

ABSTRACT

OBJECTIVE: Few studies have reported the direct effect of C-X-C motif chemokine ligand 10 (CXCL10) and Neuregulin 1 (Nrg1) on neurons after spinal cord injury (SCI). This study reports the role of CXCL10 in the regulation of neuronal damage after SCI and the potential therapeutic effect of Nrg1. METHODS: The expression level of CXCL10 and Nrg1 in SCI mice was analyzed in the Gene Expression Omnibus DataSets, followed by immunohistochemical confirmation using a mouse SCI model. HT22 cells and NSC34 cells were treated with CXCL10 and Nrg1, individually or in combination, and then assayed for cell viability. The percentage of wound closure was determined through the cell scratch injury model using HT22 and NSC34 cells. Potential molecular mechanisms were also tested in response to either the individual administration of CXCL10 and Nrg1 or a mixture of both molecules. RESULTS: CXCL10 expression was significantly increased in both young and old mice subjected to SCI, while Nrg1 expression was significantly decreased. CXCL10 induced a decrease in cell viability, which was partially reversed by Nrg1. CXCL10 failed to inhibit scratch healing in HT22 and NSC34 cells, while Nrg1 promoted scratch healing. At the molecular level, CXCL10-activated cleaved caspase 9 and cleaved caspase 3 were both inhibited by Nrg1 through pERK1/2 signaling in HT22 and NSC34 cells. CONCLUSIONS: CXCL10 is upregulated in SCI. Despite the negative effect on cell viability, CXCL10 failed to inhibit the scratch healing of HT22 and NSC34 cells. Nrg1 may protect neurons by partially antagonizing the effect of CXCL10.


Subject(s)
Neuregulin-1 , Spinal Cord Injuries , Animals , Disease Models, Animal , Neuregulin-1/pharmacology , Neurons/metabolism , Signal Transduction , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Mice
8.
Mol Neurobiol ; 60(9): 5137-5154, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37266763

ABSTRACT

Neuroinflammation mediated by brain glial cells is one of the pathological drivers of Parkinson's disease (PD). Recent studies have shown that higher circulating trimethylamine N-oxide (TMAO, a gut microbiota-derived metabolite) can induce neuroinflammation and are strongly related to a variety of central nervous system diseases and adverse brain events. Herein, we explored the effect of pre-existing higher circulating TMAO on dopamine system and neuroinflammation in acute PD model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP). TMAO pretreatment was given by adding 3% (w/v) TMAO to drinking water of mice for 21 days to induce higher circulating TMAO status, then mice were administered with MPTP (20 mg/kg, i.p) for four times in one day to construct an acute PD model mice and treated with TMAO continuously until the end of the experiment. Results demonstrated that TMAO treatment significantly increased serum TMAO levels. Moreover, high serum TMAO significantly increased activation of microglia and astrocytes both in striatum and in substantia nigra. And strikingly, high serum TMAO significantly promoted the metabolism of striatal dopamine (DA) of PD model mice, although it had no significant effect on the number of dopaminergic neurons or the content of DA. Furthermore, immunofluorescence, ELISA, and RT-qPCR results of the hippocampus also showed that high serum TMAO significantly promoted the activation of microglia and astrocytes in the dentate gyrus, increased the levels of TNF-α and IL-1ß, and upregulated gene expression of M1 microglia-related markers (including CD16, CD32, and iNOS) and A2 astrocyte-related markers (including S100a10, Ptx3, and Emp1) in mRNA levels. In summary, we found that pre-existing high serum levels of TMAO worsened the PD-related brain pathology by promoting DA metabolism, aggravating neuroinflammation and regulating glial cell polarization.


Subject(s)
MPTP Poisoning , Parkinson Disease , Mice , Animals , Parkinson Disease/pathology , Dopamine/metabolism , MPTP Poisoning/metabolism , Neuroinflammatory Diseases , Microglia/metabolism , Dopaminergic Neurons/metabolism , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
9.
Brain Sci ; 13(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37239205

ABSTRACT

Neuroinflammation is one of the hallmarks of Parkinson's disease, including the massive activation of microglia and astrocytes and the release of inflammatory factors. Receptor-interacting protein kinase 1 (RIPK1) is reported to mediate cell death and inflammatory signaling, and is markedly elevated in the brain in PD mouse models. Here, we aim to explore the role of RIPK1 in regulating the neuroinflammation of PD. C57BL/6J mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 20 mg/kg four times/day), followed by necrostatin-1 treatment (Nec-1, RIPK1 inhibitor; 1.65 mg/kg once daily for seven days. Notably, the first Nec-1 was given 12 h before MPTP modeling). Behavioral tests indicated that inhibition of RIPK1 greatly relieved motor dysfunction and anxiety-like behaviors of PD mice. It also increased striatal TH expression, rescue the loss of dopaminergic neurons, and reduce activation of astrocytes in the striatum of PD mice. Furthermore, inhibition of RIPK1 expression reduced A1 astrocytes' relative gene expression (CFB, H2-T23) and inflammatory cytokine or chemokine production (CCL2, TNF-α, IL-1ß) in the striatum of PD mice. Collectively, inhibition of RIPK1 expression can provide neuroprotection to PD mice, probably through inhibition of the astrocyte A1 phenotype, and thus RIPK1 might be an important target in PD treatment.

10.
Brain Sci ; 13(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37239262

ABSTRACT

Observational studies have shown abnormal changes in trimethylamine N-oxide (TMAO) levels in the peripheral circulatory system of Parkinson's disease (PD) patients. TMAO is a gut microbiota metabolite that can cross the blood-brain barrier and is strongly related to neuroinflammation. Neuroinflammation is one of the pathological drivers of PD. Herein, we investigated the effect of TMAO on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice. TMAO pretreatment was given by adding 1.5% (w/v) TMAO to the drinking water of the mice for 21 days; then, the mice were administered MPTP (20 mg/kg, i.p.) four times a day to construct an acute PD model. Their serum TMAO concentrations, motor function, dopaminergic network integrity, and neuroinflammation were then assayed. The results showed that TMAO partly aggravated the motor dysfunction of the PD mice. Although TMAO had no effect on the dopaminergic neurons, TH protein content, and striatal DA level in the PD mice, it significantly reduced the striatal 5-HT levels and aggravated the metabolism of DA and 5-HT. Meanwhile, TMAO significantly activated glial cells in the striatum and the hippocampi of the PD mice and promoted the release of inflammatory cytokines in the hippocampus. In summary, higher-circulating TMAO had adverse effects on the motor capacity, striatum neurotransmitters, and striatal and hippocampal neuroinflammation in PD mice.

11.
J Nutr Biochem ; 115: 109282, 2023 05.
Article in English | MEDLINE | ID: mdl-36758839

ABSTRACT

Inflammatory bowel disease can cause pathological changes of certain organs, including the gut and brain. As the major degradation route of tryptophan (Trp), Kynurenine (Kyn) pathway are involved in multiple pathologies of brain. This study sought to explore the effects of Dextran sulphate sodium (DSS)-induced colitis on serum and brain Trp metabolism (especially the Kyn pathway) and its mechanisms. We induced acute colitis and sub-chronic colitis with 3% DSS and 1% DSS respectively and found more severe intestinal symptoms in acute colitis than sub-chronic colitis. Both of the colitis groups altered Trp-Kyn-Kynurenic acid (Kyna) pathway in serum by regulating the expression of rate-limiting enzyme (IDO-1, KAT2). Interestingly, only 3% DSS group activated Trp-Kyn pathway under the action of metabolic enzymes (IDO-1, TDO-2 and KAT2) in brain. Furthermore, intestinal flora 16S rRNA sequencing showed significantly changes in both DSS-induced colitis groups, including microbial diversity, indicator species, and the abundance of intestinal microflora related to Trp metabolism. The functional pathways of microbiomes involved in inflammation and Trp biosynthesis were elevated after DSS treatment. Moreover, correlation analysis showed a significant association between intestinal flora and Trp metabolism (both in serum and brain). In conclusion, our study suggests that DSS-induced acute colitis causes dysregulation of Trp-Kyn-Kyna pathways of Trp metabolism in serum and brain by affecting rate-limiting enzymes and intestinal flora.


Subject(s)
Colitis , Gastrointestinal Microbiome , Humans , Tryptophan/metabolism , RNA, Ribosomal, 16S , Kynurenine/metabolism , Colitis/pathology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Brain/metabolism
12.
J Neuroimmune Pharmacol ; 18(1-2): 72-89, 2023 06.
Article in English | MEDLINE | ID: mdl-35091889

ABSTRACT

A growing body of evidence implies that gut microbiota was involved in pathogenesis of Parkinson's disease (PD), but the mechanism is still unclear. The aim of this study is to investigate the effects of antibiotics pretreatment on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. In this study, vancomycin pretreatment was given by gavage once daily with either vancomycin or distilled water for 14 days to mice, then mice were administered with MPTP (20 mg/kg, i.p) for four times in one day to establish an acute PD model. Results show that vancomycin pretreatment significantly improved motor dysfunction of mice in pole and traction tests. Although vancomycin pretreatment had no effect on dopamine (DA) or the process of DA synthesis, it inhibited the metabolism of DA by suppressing the expression of striatal monoamine oxidase B (MAO-B). Furthermore, vancomycin pretreatment reduced the number of astrocytes and microglial cells in the substantia nigra pars compacta (SNpc) to alleviate neuroinflammation, decreased the expression of TLR4/MyD88/NF-κB/TNF-α signaling pathway in both brain and gut. Meanwhile, vancomycin pretreatment changed gut microbiome composition and the levels of fecal short chain fatty acids (SCFAs). The abundance of Akkermansia and Blautia increased significantly after vancomycin pretreatment, which might be related to inflammation and inhibition of TLR4 signaling pathway. In summary, these results demonstrate that the variation of gut microbiota and its metabolites induced by vancomycin pretreatment might decrease dopamine metabolic rate and relieve inflammation in both gut and brain via the microbiota-gut-brain axis in MPTP-induced PD mice. The neuroprotection of vancomycin pretreatment on MPTP-induced Parkinson's disease mice The alterations of gut microbiota and SCFAs induced by vancomycin pretreatment might not only improve motor dysfunction, but also decrease dopamine metabolism and relieve inflammation in both brain and gut via TLR4/MyD88/NF-κB/TNF-α pathway in MPTP-induced PD mice.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Mice , Parkinson Disease/metabolism , Dopamine/metabolism , Vancomycin/pharmacology , Vancomycin/metabolism , Vancomycin/therapeutic use , Neuroprotection , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Tumor Necrosis Factor-alpha/metabolism , Toll-Like Receptor 4/metabolism , Brain/metabolism , Inflammation/drug therapy , Inflammation/pathology , Mice, Inbred C57BL , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Disease Models, Animal , Neuroprotective Agents/therapeutic use
13.
Front Oncol ; 12: 914060, 2022.
Article in English | MEDLINE | ID: mdl-35847920

ABSTRACT

Background: Transient receptor potential melastatin 8 (TRPM8) modulates tumor biology and sensitivity to treatment. The present study aimed to determine the part it plays in tumor immunity and physiology using pan-cancer analysis. Method: Data from the GTEx, CCLE, TISIDB, GSCA, cBioportal, and TCGA databases were collected using Estimate, Scanneo, and GSEA, and the associations between TRPM8 and prognosis, molecular subtypes, mutational burden, microsatellite instability, immune gene functions, and drug sensitivity were analyzed in 33 tumor types. Result: TRPM8 levels were found to be elevated in most tumors, particularly in solid tumors, with variations according to clinical stage. Mutation frequency was greatest in endometrial carcinoma. High levels of TRPM8 were linked to unfavorable prognosis, immune cell infiltration, and the tumor microenvironment, as well as correlating with abnormalities in the transcription levels of genes associated with immunity and DNA repair. TRPM8 was also linked to unfavorable patient outcomes and cancer-associated signaling. Conclusions: TRPM8 is strongly associated with tumor physiology and immunity. The Pan-Cancer analysis suggests the potential of TRPM8 as a treatment target or biomarker for determining the prognosis of a specific type of cancer.

14.
Cell Mol Neurobiol ; 42(5): 1373-1384, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33481118

ABSTRACT

Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor produced locally in the central nervous system which can promote axonal regeneration, protect motoneurons, and inhibit neuroinflammation. In this study, we used the zebrafish spinal transection model to investigate whether IGF-1 plays an important role in the recovery of motor function. Unlike mammals, zebrafish can regenerate axons and restore mobility in remarkably short period after spinal cord transection. Quantitative real-time PCR and immunofluorescence showed decreased IGF-1 expression in the lesion site. Double immunostaining for IGF-1 and Islet-1 (motoneuron marker)/GFAP (astrocyte marker)/Iba-1 (microglia marker) showed that IGF-1 was mainly expressed in motoneurons and was surrounded by astrocyte and microglia. Following administration of IGF-1 morpholino at the lesion site of spinal-transected zebrafish, swimming test showed retarded recovery of mobility, the number of motoneurons was reduced, and increased immunofluorescence density of microglia was caused. Our data suggested that IGF-1 enhances motoneuron survival and inhibits neuroinflammation after spinal cord transection in zebrafish, which suggested that IGF-1 might be involved in the motor recovery.


Subject(s)
Spinal Cord Injuries , Zebrafish , Animals , Axons/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/pharmacology , Mammals , Motor Neurons/metabolism , Nerve Regeneration/physiology , Neuroinflammatory Diseases , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism
15.
Front Immunol ; 13: 1089200, 2022.
Article in English | MEDLINE | ID: mdl-36776388

ABSTRACT

Accumulative studies suggest that inflammatory bowel disease (IBD) may cause multiple central nervous system (CNS) pathologies. Studies have found that indoleamine-2,3-dioxygenase (IDO, rate-limiting enzyme of the kynurenine (Kyn) pathway) deficient mice were protected from endotoxin induced cognitive impairment, and Kyn administration induced cognitive memory deficits in both control and IDO-deficient mice. However, there is no investigation of the brain Kyn pathway in IBD, thus we investigated whether dextran sulfate sodium (DSS)-induced colitis could cause dysregulation of Kyn pathway in brain, and also in serum. C57BL/6J mice were given drinking water with 2% DSS for 10 consecutive days to induce colitis. In serum, we found significant increase in Kyn and kynurenic acid (Kyna) level, which was regulated by IDO-1 and KAT2 (rate-limiting enzymes of Trp-Kyn-Kyna pathway). Similarly, by analyzing GEO datasets, higher IDO-1 levels in peripheral blood monocytes and colon of UC patients was found. Furthermore, the Kyn pathway was significantly upregulated in the cerebral cortex under the action of IDO-1 after DSS treatment, which ultimately induced the neurotoxic phenotype of astrocytes. To investigate whether gut microbiota is involved in IBD-induced Kyn pathway dysregulation, we performed intestinal flora 16S rRNA sequencing and found that DSS-induced colitis significantly altered the composition and diversity of the gut microbiota. Metabolic function analysis also showed that Tryptophan metabolism, NOD-like receptor signaling pathway and MAPK signaling pathway were significantly up-regulated in the 2% DSS group. A significant association between intestinal flora and Trp metabolism (both in serum and brain) was found by correlation analysis. Overall, this study revealed that DSS-induced colitis causes dysregulation of the Kyn pathway in serum and brain by affecting rate-limiting enzymes and intestinal flora.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Mice , Kynurenine/metabolism , Tryptophan/metabolism , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Tryptophan Oxygenase/metabolism , Brain/metabolism , Colitis/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
16.
Brain Res Bull ; 176: 174-183, 2021 11.
Article in English | MEDLINE | ID: mdl-34478811

ABSTRACT

Aryl Hydrocarbon Receptor (AHR) is a ligand-activated transcription factor expressed in various brain regions. However, little is known about the role of AHR during neuroinflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Here, mice were sacrificed at day 4, day 6 and day 8 respectively after MPTP or saline treatment. Behavioral tests, Tyrosine hydroxylase (TH) expression, glial reaction, and AHR expression and activation were then assayed. As expected, mice treated with MPTP showed apparent behavioral dysfunctions and significantly reduced TH content. Immunofluorescence (IF) labeling showed an increased trend of phosphorylated AHR activation in the Substantia Nigra pars compacta (SNpc) and striatum after MPTP treatment. Western blot analysis demonstrated that MPTP treatment induced a significantly increased level of AHR at each time point tested, with the highest level observed at day 6 in the striatum. To determine exactly the AHR activation in relation to changes of glial cell reactivity, double IF labeling was performed for either IBA1 (microglia marker) and p-AHR, or GFAP (astrocyte marker) and p-AHR. The results demonstrated that MPTP treatment not only increases the number of p-AHR-positive IBA1-expressing cells in the striatum and the SNpc, but also increases that of p-AHR-positive GFAP-expressing cells in the striatum. Intriguingly, the increase of the number of cells co-expressing both p-AHR and IBA1 was highest at day 4 in response to MPTP in the striatum and at day 8 in the SNpc. The number of cells co-expressing both p-AHR and GFAP was increased at days 4, 6 and 8 in the striatum. In conclusion, our study suggests that AHR activation may facilitate PD diagnosis and serve as a target for the treatment of PD.


Subject(s)
Astrocytes/metabolism , Corpus Striatum/metabolism , Microglia/metabolism , Parkinsonian Disorders/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Substantia Nigra/metabolism , Animals , Dopaminergic Neurons/metabolism , Mice , Phosphorylation , Tyrosine 3-Monooxygenase/metabolism
17.
Exp Neurol ; 345: 113831, 2021 11.
Article in English | MEDLINE | ID: mdl-34363807

ABSTRACT

In strong contrast to limited repair within the mammalian central nervous system, the spinal cord of adult zebrafish is capable of almost complete recovery following injury. Understanding the mechanism underlying neural repair and functional recovery in zebrafish may lead to innovative therapies for human spinal cord injury (SCI). Since neuropeptide Y (NPY) plays a protective role in the pathogenesis of several neurological diseases, in the present study, we evaluated the effects of NPY on neuronal repair and subsequent recovery of motor function in adult zebrafish following SCI. Real-time quantitative PCR (qRT-PCR), in situ hybridization and immunostaining for NPY revealed decreased NPY expression at 12 hours (h), 6 and 21 days (d) after SCI. Double-immunostaining for NPY and islet-1, a motoneuron marker, showed that NPY was expressed in spinal cord motoneurons. Morpholino (MO) treatment for suppressing the expression of NPY inhibited supraspinal axon regrowth and locomotor recovery, in which double-staining for proliferating cell nuclear antigen (PCNA) and islet-1 showed a reduction in motoneuron proliferation. Similarly, a downregulated mRNA level of Y1 receptor of NPY (NPY1R) was also detected at 12 h, 6 and 21 d after injury. Immunostaining for NPY and in situ hybridization for NPY1R revealed that NPY1R was co-localized with NPY. Collectively, the results suggest that NPY expression in motoneurons promotes descending axon regeneration and locomotor recovery in adult zebrafish after SCI, possibly by regulating motoneuron proliferation through activation of NPY1R.


Subject(s)
Neuropeptide Y/biosynthesis , Recovery of Function/physiology , Spinal Cord Injuries/metabolism , Zebrafish Proteins/biosynthesis , Animals , Female , Gene Expression , Male , Motor Neurons/metabolism , Neuropeptide Y/genetics , Spinal Cord Injuries/genetics , Zebrafish , Zebrafish Proteins/genetics
18.
Biochem Biophys Res Commun ; 556: 16-22, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33836343

ABSTRACT

Evidence suggests constipation precedes motor dysfunction and is the most common gastrointestinal symptom in Parkinson's disease (PD). 5-HT4 receptor (5-HT4R) agonist prucalopride has been approved to treat chronic constipation. Here, we reported intraperitoneal injection of prucalopride for 7 days increased dopamine and decreased dopamine turnover. Prucalopride administration improved motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mouse models. Prucalopride treatment also ameliorated intestinal barrier impairment and increased IL-6 release in PD model mice. However, prucalopride treatment exerted no impact on JAK2/STAT3 pathway, suggesting that prucalopride may stimulate IL-6 via JAK2/STAT3-independent pathway. In conclusion, prucalopride exerted beneficial effects in MPTP-induced Parkinson's disease mice by attenuating the loss of dopamine, improving motor dysfunction and intestinal barrier.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Benzofurans/pharmacology , Benzofurans/therapeutic use , Intestinal Mucosa/drug effects , Motor Skills/drug effects , Parkinson Disease/prevention & control , Parkinson Disease/physiopathology , Animals , Body Weight/drug effects , Disease Models, Animal , Dopamine/metabolism , Eating/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Janus Kinase 2/metabolism , MPTP Poisoning/drug therapy , MPTP Poisoning/physiopathology , MPTP Poisoning/prevention & control , Male , Mice , Mice, Inbred C57BL , Neostriatum/metabolism , Parkinson Disease/drug therapy , Parkinson Disease, Secondary/physiopathology , Parkinson Disease, Secondary/prevention & control , STAT3 Transcription Factor/metabolism
19.
Neurochem Res ; 45(9): 2128-2142, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32556930

ABSTRACT

The abnormal production of short chain fatty acid (SCFAs) caused by gut microbial dysbiosis plays an important role in the pathogenesis and progression of Parkinson's disease (PD). This study sought to evaluate how butyrate, one of SCFAs, affect the pathology in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated mouse model of PD. Sodium butyrate (NaB; 165 mg/kg/day i.g., 7 days) was administrated from the day after the last MPTP injection. Interestingly, NaB significantly aggravated MPTP-induced motor dysfunction (P < 0.01), decreased dopamine (P < 0.05) and 5-HT (P < 0.05) levels, exacerbated declines of dopaminergic neurons (34%, P < 0.05) and downregulated expression of tyrosine hydroxylase (TH, 47%, P < 0.05), potentiated glia-mediated neuroinflammation by increasing the number of microglia (17%, P < 0.05) and activating astrocytes (28%, P < 0.01). In vitro study also confirmed that NaB could significantly exacerbate pro-inflammatory cytokines expression (IL-1ß, 4.11-fold, P < 0.01; IL-18, 3.42-fold, P < 0.01 and iNOS, 2.52-fold, P < 0.05) and NO production (1.55-fold, P < 0.001) in LPS-stimulated BV2 cells. In addition, NaB upregulated the expression of pro-inflammatory cytokines (IL-6, 3.52-fold, P < 0.05; IL-18, 1.72-fold, P < 0.001) and NLRP3 (3.11-fold, P < 0.001) in the colon of PD mice. However, NaB had no effect on NFκB, MyD88 and TNF-α expression in PD mice. Our results indicate that NaB exacerbates MPTP-induced PD by aggravating neuroinflammation and colonic inflammation independently of the NFκB/MyD88/TNF-α signaling pathway.


Subject(s)
Butyric Acid/toxicity , Inflammation/physiopathology , Parkinson Disease, Secondary/physiopathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Astrocytes/drug effects , Cell Line , Colon/drug effects , Cytokines/metabolism , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Hypokinesia/physiopathology , Inflammation/chemically induced , Lipopolysaccharides , Male , Mice, Inbred C57BL , Microglia/drug effects , Parkinson Disease, Secondary/chemically induced , Serotonin/metabolism , Tight Junctions/metabolism , Tyrosine 3-Monooxygenase/metabolism
20.
Exp Cell Res ; 387(1): 111772, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31836471

ABSTRACT

Aggregation of α-Synuclein is central to the pathogenesis of Parkinson's disease (PD). However, these α-Synuclein inclusions are not only present in brain, but also in gut. Enteroendocrine cells (EECs), which are directly exposed to the gut lumen, can express α-Synuclein and directly connect to α-Synuclein-containing nerves. Dysbiosis of gut microbiota and microbial metabolite short-chain fatty acids (SCFAs) has been implicated as a driver for PD. Butyrate is an SCFA produced by the gut microbiota. Our aim was to demonstrate how α-Synuclein expression in EECs responds to butyrate stimulation. Interestingly, we found that sodium butyrate (NaB) increases α-Synuclein mRNA expression, enhances Atg5-mediated autophagy (increased LC3B-II and decreased SQSTM1 (also known as p62) expression) in murine neuroendocrine STC-1 cells. Further, α-Synuclein mRNA was decreased by the inhibition of autophagy by using inhibitor bafilomycin A1 or by silencing Atg5 with siRNA. Moreover, the PI3K/Akt/mTOR pathway was significantly inhibited and cell apoptosis was activated by NaB. Conditioned media from NaB-stimulated STC-1 cells induced inflammation in SH-SY5Y cells. Collectively, NaB causes α-Synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway.


Subject(s)
Autophagy-Related Protein 5/metabolism , Butyric Acid/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , alpha-Synuclein/metabolism , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Mice , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...