Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Technol ; 117: 158-166, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35153450

ABSTRACT

Contact infection of bacteria and viruses has been a critical threat to human health. The worldwide outbreak of COVID-19 put forward urgent requirements for the research and development of the self-antibacterial materials, especially the antibacterial alloys. Based on the concept of high-entropy alloys, the present work designed and prepared a novel Co0.4FeCr0.9Cu0.3 antibacterial high-entropy alloy with superior antibacterial properties without intricate or rigorous annealing processes, which outperform the antibacterial stainless steels. The antibacterial tests presented a 99.97% antibacterial rate against Escherichia coli and a 99.96% antibacterial rate against Staphylococcus aureus after 24 h. In contrast, the classic antibacterial copper-bearing stainless steel only performed the 71.50% and 80.84% antibacterial rate, respectively. The results of the reactive oxygen species analysis indicated that the copper ion release and the immediate contact with copper-rich phase had a synergistic effect in enhancing antibacterial properties. Moreover, this alloy exhibited excellent corrosion resistance when compared with the classic antibacterial stainless steels, and the compression test indicated the yield strength of the alloy was 1015 MPa. These findings generate fresh insights into guiding the designs of structure-function-integrated antibacterial alloys.

3.
Sci Bull (Beijing) ; 66(22): 2281-2287, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-36654456

ABSTRACT

Phase transformation changes numerous properties of materials. Ti-Pt alloys have received much interest because of high martensitic transformation temperature. However, the intrinsic brittleness of these intermetallic compounds with low crystal symmetry and complicated phase structure limit their applications, especially when composition deviates from stoichiometry ratio. By performing in situ heating high-resolution scanning transmission electron microscopy experiment and micro-mechanical testing on Ti-35 at% Pt that contained majorly Ti3Pt and αTiPt phases, it was found that precipitating herringbone twinned αTiPt islands within Ti3Pt could occur upon heating, significantly refining mixed-phase structure. The refinement of multi-intermetallic mixed-phase structure endowed brittle material with remarkable capacity for plastic deformation and strain hardening. The plastic deformation mechanisms include phase transformation upon yielding and dislocation slips during hardening, which rarely occurs in intermetallic compounds with low symmetry. The strong interaction between different deformation modes even caused nano-crystallization along slip bands. The results demonstrate that brittle-to-ductile transition in intermetallic compounds can be achieved by tuning mixed-phase structure through phase transformations.

SELECTION OF CITATIONS
SEARCH DETAIL
...