Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 15: 1341316, 2024.
Article in English | MEDLINE | ID: mdl-38873153

ABSTRACT

Background: Microorganisms in biofilms are particularly difficult to control because of their increased survival and antibiotic resistance. Allicin and domiphen were employed to inhibit the microbial growth and biofilm formation of Staphylococcus aureus, Escherichia coli, and Candida albicans strains. Methods: Broth microdilution method and checkerboard assay were conducted to determine the efficacy of allicin combined with domiphen against S. aureus, E. coli, and C. albicans. Microbial biofilm formation was measured using the crystal violet staining method and fluorescence microscopy. And the total viable count of the biofilm cells on material surface after the treatment with antimicrobial reagents was calculated with the plate count technique. Results: The two drugs showed synergistic effects against the pathogens with a fractional bactericidal concentration of less than 0.38. The combination of 64 µg/mL allicin with 1 µg/mL domiphen dispersed over 50% of the biofilm mass of S. aureus, E. coli, and C. albicans. In addition, the drug combination reduced the total viable counts of E. coli and C. albicans biofilm cells on stainless steel and polyethylene surfaces by more than 102 CFU/mL. Conclusion: The combination of allicin and domiphen is an effective strategy for efficiently decreasing biofilms formation on various industrial materials surfaces.

2.
Biotechnol J ; 19(2): e2300159, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403400

ABSTRACT

Biofilms of the foodborne pathogen Staphylococcus aureus show improved resistance to antibiotics and are difficult to eliminate. To enhance antibacteria and biofilm dispersion via extracellular matrix diffusion, a new lipid nanoparticle was prepared, which employed a mixture of phospholipids and a 0.8% surfactin shell. In the lipid nanoparticle, 31.56 µg mL-1 of erythromycin was encapsulated. The lipid nanoparticle size was approximately 52 nm and the zeta-potential was -67 mV, which was measured using a Marvin laser particle size analyzer. In addition, lipid nanoparticles significantly dispersed the biofilms of S. aureus W1, CICC22942, and CICC 10788 on the surface of stainless steel, reducing the total viable count of bacteria in the biofilms by 103 CFU mL-1 . In addition, the lipid nanoparticle can remove polysaccharides and protein components from the biofilm matrix. The results of laser confocal microscopy showed that the lipid nanoparticles effectively killed residual bacteria in the biofilms. Thus, to thoroughly eliminate biofilms on material surfaces in food factories to avoid repeated contamination, drug-lipid nanoparticles present a suitable method to achieve this.


Subject(s)
Nanoparticles , Staphylococcal Infections , Humans , Staphylococcus aureus , Biofilms , Liposomes , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Bacteria
3.
Int J Nanomedicine ; 18: 4857-4870, 2023.
Article in English | MEDLINE | ID: mdl-37662688

ABSTRACT

Purpose: Herein, an emerging drug delivery system was constructed based on zeolite imidazole backbone (ZIF-8) to improve antibacterial defects of nanosilver (AgNPs), such as easily precipitated and highly cytotoxic. Methods: The homogeneous dispersion of AgNPs on ZIF-8 was confirmed by UV-Vis spectroscopy, FTIR spectroscopy, particle size analysis, zeta potential analysis, and SEM. The appropriate AgNPs loading ratio on ZIF-8 was screened through the cell and antibacterial experiments based on biosafety and antibacterial performance. The optimal environment for AgNPs@ZIF-8 to exert antibacterial performance was probed in the context of bacterial communities under different acid-base conditions. The potential mechanism of AgNPs@ZIF-8 to inhibit the common clinical strains was investigated by observing the biofilm metabolic activity and the level of reactive oxygen species (ROS) in bacteria. Results: The successful piggybacking of AgNPs by ZIF-8 was confirmed using UV-Vis spectroscopy, FTIR spectroscopy, particle size analysis, zeta potential analysis, and SEM characterization methods. Based on the bacterial growth curve (0-24 hours), the antibacterial ability of AgNPs@ZIF-8 was found to be superior to AgNPs. When the mass ratio of ZIF-8 and AgNPs was 1:0.25, the selection of AgNPs@ZIF-8 was based on its superior antimicrobial efficacy and enhanced biocompatibility. Notably, under weakly acidic bacterial microenvironments (pH=6.4), AgNPs@ZIF-8 demonstrated a more satisfactory antibacterial effect. In addition, experiments on biofilms showed that concentrations of AgNPs@ZIF-8 exceeding 1×MIC resulted in more than 50% biofilm removal. The nanomedicine was found to increase ROS levels upon detecting the ROS concentration in bacteria. Conclusion: Novel nanocomposites consisting of low cytotoxicity drug carrier ZIF-8 loaded with AgNPs exhibited enhanced antimicrobial effects compared to AgNPs alone. The pH-responsive nano drug delivery system, AgNPs@ZIF-8, exhibited superior antimicrobial activity in a mildly acidic environment. Moreover, AgNPs@ZIF-8 effectively eradicated pathogenic bacterial biofilms and elevated the intracellular level of ROS.


Subject(s)
Anti-Bacterial Agents , Nanocomposites , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Biofilms , Hydrogen-Ion Concentration
4.
Microorganisms ; 9(7)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34361968

ABSTRACT

Staphylococcus aureus is a common food pathogen and has a strong tolerance to environmental stress. Here, the biofilm formation of S. aureus strains after cold stress for 24 weeks were investigated. It was found that the biofilm formation of S. aureus CICC 21600, CICC 22942, W1, W3, and C1 cells was enhanced after cold stress for 20 weeks. What is more, the mRNA levels of the clfA, icaA, icaB, icaC or icaD genes in these strains were increased for >2-fold. The increased gene transcription levels were consistent with the increase in the polysaccharide content in the biofilm matrix of these S. aureus strains after cold stress. Meanwhile, hydrophobicity and the adhesion proteins also played a role in the formation of biofilms. The biofilm of S. aureus cells can be effectively degraded by snailase and proteinase K (125 µg/mL + 20 µg/mL) mixture. In summary, S. aureus frozen at -20 °C for 12 to 20 weeks is still a potential hazard. Food factory equipment should be cleaned in a timely manner to avoid outbreaks of foodborne pathogenic bacteria due to contamination.

5.
Food Res Int ; 137: 109405, 2020 11.
Article in English | MEDLINE | ID: mdl-33233092

ABSTRACT

In a food-processing environment, bacterial cells often adhere to surfaces and form biofilms to protect themselves from external adverse influences. Our study aimed to identify the influence of environmental factors and cell properties on Listeria monocytogenes biofilm formation. Biofilm formation was quantified through measuring the optical density at 590 nm (OD590 nm) after crystal violet staining. Neutral pH and 37oC were beneficial for biofilm formation whereas the influence of glucose (0.0-1.0%) and sodium chloride (0.0-1.0%) were strain-dependent. In general, the addition of sodium chloride and glucose increased biofilm formation in most strains compared to that in controls with no sodium chloride or glucose added. Bacteria with strong biofilm-forming capacity always produced large amounts of biofilm in most instances. Biofilm formation positively correlated with the cell surface hydrophobicity and motility but was independent from planktonic cell growth. The expression of flagella-related flaA, motB, and the two-component chemotactic system cheA/Y genes in biofilm cells increased compared to that in planktonic cells. Meanwhile, a cheY knockout mutant was constructed, and decreased biofilm-formation ability along with reduced cell-surface hydrophobicity were found in the non-motile mutant. Furthermore, the cheY knockout mutant showed no change in growth, and pH susceptibility compared to that in the wild-type strain.


Subject(s)
Listeria monocytogenes , Biofilms , Flagella , Food Handling , Hydrophobic and Hydrophilic Interactions , Listeria monocytogenes/genetics
6.
Res Microbiol ; 165(8): 605-11, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25084557

ABSTRACT

Hydrogen peroxide (H2O2) is usually generated by normal aerobic respiration of pathogens and by the host defense response during plant-pathogen interactions. In this study, histochemical localization of H2O2 accumulation in rice inoculated with the wild-type strain (PXO99(A)) and the gene deletion mutant (ΔahpC) of alkyl hydroperoxide reductase subunit C (AhpC) of Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, was analyzed. The ΔahpC mutant displayed a significant decrease in endogenous H2O2 accumulation which was induced by the compensatory increase in H2O2 scavenging activity. The change in the bacterial endogenous H2O2 level affected the total amount of H2O2 accumulation during the interaction with rice plants. These results suggested that Xoo contributes to H2O2 accumulation in rice in a compatible interaction, and pathogen-driving H2O2 is in association with cell collapse of rice.


Subject(s)
Host-Pathogen Interactions , Hydrogen Peroxide/metabolism , Mutation , Oryza/microbiology , Peroxiredoxins/metabolism , Xanthomonas/enzymology , Xanthomonas/physiology , Gene Deletion , Mutant Proteins/genetics , Mutant Proteins/metabolism , Peroxiredoxins/genetics , Plant Diseases/microbiology , Xanthomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL