Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5185, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431702

ABSTRACT

LncRNAs are non-coding RNAs with a length of more than 200 nucleotides. More and more evidence shows that lncRNAs are inextricably linked with diseases. To make up for the shortcomings of traditional methods, researchers began to collect relevant biological data in the database and used bioinformatics prediction tools to predict the associations between lncRNAs and diseases, which greatly improved the efficiency of the study. To improve the prediction accuracy of current methods, we propose a new lncRNA-disease associations prediction method with attention mechanism, called ResGCN-A. Firstly, we integrated lncRNA functional similarity, lncRNA Gaussian interaction profile kernel similarity, disease semantic similarity, and disease Gaussian interaction profile kernel similarity to obtain lncRNA comprehensive similarity and disease comprehensive similarity. Secondly, the residual graph convolutional network was used to extract the local features of lncRNAs and diseases. Thirdly, the new attention mechanism was used to assign the weight of the above features to further obtain the potential features of lncRNAs and diseases. Finally, the training set required by the Extra-Trees classifier was obtained by concatenating potential features, and the potential associations between lncRNAs and diseases were obtained by the trained Extra-Trees classifier. ResGCN-A combines the residual graph convolutional network with the attention mechanism to realize the local and global features fusion of lncRNA and diseases, which is beneficial to obtain more accurate features and improve the prediction accuracy. In the experiment, ResGCN-A was compared with five other methods through 5-fold cross-validation. The results show that the AUC value and AUPR value obtained by ResGCN-A are 0.9916 and 0.9951, which are superior to the other five methods. In addition, case studies and robustness evaluation have shown that ResGCN-A is an effective method for predicting lncRNA-disease associations. The source code for ResGCN-A will be available at https://github.com/Wangxiuxiun/ResGCN-A .


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , Algorithms , Software , Computational Biology/methods , Databases, Factual
2.
Sci Rep ; 12(1): 5819, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388048

ABSTRACT

Growing evidence shows that long noncoding RNAs (lncRNAs) play an important role in cellular biological processes at multiple levels, such as gene imprinting, immune response, and genetic regulation, and are closely related to diseases because of their complex and precise control. However, most functions of lncRNAs remain undiscovered. Current computational methods for exploring lncRNA functions can avoid high-throughput experiments, but they usually focus on the construction of similarity networks and ignore the certain directed acyclic graph (DAG) formed by gene ontology annotations. In this paper, we view the function annotation work as a hierarchical multilabel classification problem and design a method HLSTMBD for classification with DAG-structured labels. With the help of a mathematical model based on Bayesian decision theory, the HLSTMBD algorithm is implemented with the long-short term memory network and a hierarchical constraint method DAGLabel. Compared with other state-of-the-art algorithms, the results on GOA-lncRNA datasets show that the proposed method can efficiently and accurately complete the label prediction work.


Subject(s)
RNA, Long Noncoding , Algorithms , Bayes Theorem , Computational Biology/methods , Decision Theory , Gene Ontology , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...