Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
IEEE Trans Cybern ; PP2024 May 17.
Article in English | MEDLINE | ID: mdl-38758614

ABSTRACT

The problem of sampled-data H∞ dynamic output-feedback control for networked control systems with successive packet losses (SPLs) and stochastic sampling is investigated in this article. The aim of using sampled-data control techniques is to alleviate network congestion. SPLs that occur in the sensor-to-controller (S-C) and controller-to-actuator (C-A) channels are modeled using a packet loss model. Additionally, it is assumed that stochastic sampling follows a Bernoulli distribution. A model is established to capture the stochastic characteristics of both the SPL model and stochastic sampling. This model is crucial as it allows us to determine the probability distribution of the sampling interval between successive update instants, which is essential for stability analysis. An exponential mean-square stability condition for the constructed equivalent discrete-time stochastic system, which also guarantees the prescribed H∞ performance, is established by incorporating probability theory. The desired controller is designed using a step-by-step synthesis approach, which may offer lower design conservatism compared to some existing methods. Finally, our designed approach using a networked F-404 engine system model is validated and its merits relative to existing results are discussed. The proposed method is finally validated by employing a networked model of the F-404 engine system. Furthermore, the advantages of our method are presented in comparison to previous results.

2.
IEEE Trans Cybern ; 53(12): 7712-7722, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36129866

ABSTRACT

The multiobjective optimal control method optimizes the performance indexes of nonlinear systems to obtain setpoints, and designs a controller to track the setpoints. However, the stepwise optimal control method that independently analyzes the optimization process may obtain unfeasible and difficult to track setpoints, which will reduce the operation and control performance of the systems. To solve this problem, a multiobjective integrated optimal control (MIOC) strategy is proposed for nonlinear systems in this article. The main contributions of MIOC are threefold. First, in the framework of multiobjective model predictive control, an integrated control structure with a comprehensive cost function and a collaborative optimization algorithm is designed to achieve the coordinate optimal control. Second, for the time inconformity of setpoints and control laws caused by the characteristic of tracking control, the different prediction horizons are designed for the comprehensive cost function. Then, the collaborative optimization algorithm is proposed for the comprehensive cost function to achieve the integrated solution of setpoints and control laws to enhance the operation and control performance of nonlinear systems. Third, the stability and control performance analysis of MIOC is provided. Finally, the proposed MIOC method is applied for a nonlinear system to demonstrate its effectiveness.

3.
IEEE Trans Cybern ; 53(11): 7126-7135, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35976832

ABSTRACT

In this article, the consensus problem of multiagent systems (MASs) affected by input and communication delays is investigated. A predictor-based state feedback protocol is used to reach the consensus of linear MASs by delay compensation. In order to analyze the maximum delay under the predictor-based protocol, the overall MASs are equivalent to the feedback interconnection system, including a linear time-invariant system and a time-delay operator, in view of the characteristic of the Laplacian matrix. Then, the maximum delay corresponding to the predictor-based protocol is evaluated by using the small gain theorem (SGT). Finally, two numerical examples are given to verify the effectiveness of the obtained consensus condition.

4.
Article in English | MEDLINE | ID: mdl-35675237

ABSTRACT

Various constraints commonly exist in most physical systems; however, traditional constraint control methods consider the constraint boundaries only relying on constant or time variable, which greatly restricts applying constraint control to practical systems. To avoid such conservatism, this study develops a new adaptive neural controller for the nonlinear strict-feedback systems subject to state-dependent constraint boundaries. The nonlinear state-dependent mapping is employed in each step of backstepping procedure, and the prescribed transient performance on tracking error and the constraints on system states are ensured without repeatedly verifying the feasibility conditions on virtual controllers. The radial basis function neural network (NN) with less parameters approach is introduced as an identifier to estimate the unknown system dynamics and reduce computation burden. For removing the effect of unknown control direction, the Nussbaum gain technique is integrated into controller design. Based on the Lyapunov analysis, the developed control strategy can ensure that all the closed-loop signals are bounded, and the constraints on full system states and tracking error are achieved. The simulation examples are used to illustrate the effectiveness of the developed control strategy.

5.
IEEE Trans Cybern ; 51(8): 3938-3951, 2021 Aug.
Article in English | MEDLINE | ID: mdl-31329145

ABSTRACT

With the increasing complexity and scale of activated sludge process (ASP), it is quite challenging to coordinate the performance indices with different time scales. To address this problem, a cooperative optimal controller (COC) is proposed to improve the operation performance in this paper. First, a cooperative optimal scheme is developed for designing the control system, where the different time-scale performance indices are formulated by two levels. Second, a data-driven surrogate-assisted optimization (DDSAO) algorithm is provided to optimize the cooperative objectives, where a surrogate model is established for evaluating the feasibility of optimal solutions based on the minimum squared error. Third, an adaptive predictive control strategy is investigated to derive the control laws for improving the tracking control performance. Finally, the proposed COC is tested on benchmark simulation model No. 1 (BSM1). The results demonstrate that the proposed COC is able to coordinate the multiple time-scale performance indices and achieve the competitive optimal control performance.

6.
IEEE Trans Cybern ; 51(5): 2518-2528, 2021 May.
Article in English | MEDLINE | ID: mdl-31329572

ABSTRACT

To achieve excellent treatment performance of complex and time-varying characteristics, the operation of wastewater treatment process (WWTP) has been considered as a dynamic multiobjective control problem. In this paper, an optimal controller, based on a dynamic multiobjective particle swarm optimization (DMOPSO) algorithm, is developed to deal with the dynamic multiple conflicting criteria [i.e., effluent quality (EQ), operation cost, and operation stability]. The novelties and advantages of this proposed DMOPSO-based optimal controller (DMOPSO-OC) include the following two aspects. First, an integrated optimization framework, where the multiple objectives not only conflict with each other but also change over time, is able to catch more characteristics of WWTP than the existing works. Second, a DMOPSO algorithm, with an adaptive global best selection mechanism, is designed to solve the multiobjective optimization problem (MOP) for the proposed optimal controller, thus leading to a significant improvement of optimal synthesis for performance. Finally, the proposed DMOPSO-OC is tested in the benchmark simulation model No. 1 (BSM1) and implemented in a real WWTP to evaluate its effectiveness. The experimental results demonstrate that this proposed DMOPSO-OC can achieve a significant improvement in optimal control performance and obey the requirement of multiple conflicting criteria.

7.
IEEE Trans Neural Netw Learn Syst ; 29(4): 1301-1313, 2018 04.
Article in English | MEDLINE | ID: mdl-28287984

ABSTRACT

In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

8.
IEEE Trans Neural Netw Learn Syst ; 29(1): 104-117, 2018 01.
Article in English | MEDLINE | ID: mdl-28113788

ABSTRACT

In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

9.
IEEE Trans Neural Netw Learn Syst ; 27(2): 402-15, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26336152

ABSTRACT

A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

10.
IEEE Trans Cybern ; 44(4): 554-64, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23782841

ABSTRACT

In this paper, a self-organizing fuzzy-neural-network with adaptive computation algorithm (SOFNN-ACA) is proposed for modeling a class of nonlinear systems. This SOFNN-ACA is constructed online via simultaneous structure and parameter learning processes. In structure learning, a set of fuzzy rules can be self-designed using an information-theoretic methodology. The fuzzy rules with high spiking intensities (SI) are divided into new ones. And the fuzzy rules with a small relative mutual information (RMI) value will be pruned in order to simplify the FNN structure. In parameter learning, the consequent part parameters are learned through the use of an ACA that incorporates an adaptive learning rate strategy into the learning process to accelerate the convergence speed. Then, the convergence of SOFNN-ACA is analyzed. Finally, the proposed SOFNN-ACA is used to model nonlinear systems. The modeling results demonstrate that this proposed SOFNN-ACA can model nonlinear systems effectively.


Subject(s)
Algorithms , Fuzzy Logic , Neural Networks, Computer , Nonlinear Dynamics , Computer Simulation , Information Theory , Models, Neurological
11.
Water Sci Technol ; 67(10): 2314-20, 2013.
Article in English | MEDLINE | ID: mdl-23676404

ABSTRACT

In order to optimize the operating points of the dissolved oxygen concentration and the nitrate level in a wastewater treatment plant (WWTP) benchmark, a data-driven adaptive optimal controller (DDAOC) based on adaptive dynamical programming is proposed. This DDAOC consists of an evaluation module and an optimization module. When a certain group of operating points is given, first the evaluation module estimates the energy consumption and the effluent quality in the future under this policy, and then the optimization module adjusts the operating points according to the evaluation result generated by the evaluation module. The optimal operating points will be found gradually as this process continues repeatedly. During the optimization, only the input-output data measured from the plant are needed, while a mechanistic model is unnecessary. The DDAOC is tested and evaluated on BSM1 (Benchmark Simulation Model No.1), and its performance is compared to the performance of a proportional-integral-derivative (PID) controller with fixed operating points under the full range of operating conditions. The results show that DDAOC can reduce the energy consumption significantly.


Subject(s)
Wastewater , Water Purification , Models, Theoretical
12.
Neural Netw ; 43: 22-32, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23500497

ABSTRACT

It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Neurons/physiology , Nonlinear Dynamics , Algorithms , Axons
13.
IEEE Trans Neural Netw Learn Syst ; 24(9): 1425-36, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24808579

ABSTRACT

In this paper, a real-time model predictive control (RT-MPC) based on self-organizing radial basis function neural network (SORBFNN) is proposed for nonlinear systems. This RT-MPC has its simplicity in parallelism to model predictive control design and efficiency to deal with computational complexity. First, a SORBFNN with concurrent structure and parameter learning is developed as the predictive model of the nonlinear systems. The model performance can be significantly improved through SORBFNN, and the modeling error is uniformly ultimately bounded. Second, a fast gradient method (GM) is enhanced for the solution of optimal control problem. This proposed GM can reduce computational cost and suboptimize the RT-MPC online. Then, the conditions of the stability analysis and steady-state performance of the closed-loop systems are presented. Finally, numerical simulations reveal that the proposed control gives satisfactory tracking and disturbance rejection performances. Experimental results demonstrate its effectiveness.


Subject(s)
Decision Support Techniques , Neural Networks, Computer , Algorithms , Computer Simulation , Humans , Nonlinear Dynamics , Predictive Value of Tests , Reaction Time , Time Factors
14.
IEEE Trans Neural Netw Learn Syst ; 23(2): 342-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-24808512

ABSTRACT

A novel learning algorithm is proposed for nonlinear modelling and identification using radial basis function neural networks. The proposed method simplifies neural network training through the use of an adaptive computation algorithm (ACA). In addition, the convergence of the ACA is analyzed by the Lyapunov criterion. The proposed algorithm offers two important advantages. First, the model performance can be significantly improved through ACA, and the modelling error is uniformly ultimately bounded. Secondly, the proposed ACA can reduce computational cost and accelerate the training speed. The proposed method is then employed to model classical nonlinear system with limit cycle and to identify nonlinear dynamic system, exhibiting the effectiveness of the proposed algorithm. Computational complexity analysis and simulation results demonstrate its effectiveness.


Subject(s)
Algorithms , Artificial Intelligence , Models, Statistical , Neural Networks, Computer , Nonlinear Dynamics , Pattern Recognition, Automated/methods , Computer Simulation , Feedback
15.
Neural Netw ; 24(7): 717-25, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21612889

ABSTRACT

This paper presents a flexible structure Radial Basis Function (RBF) neural network (FS-RBFNN) and its application to water quality prediction. The FS-RBFNN can vary its structure dynamically in order to maintain the prediction accuracy. The hidden neurons in the RBF neural network can be added or removed online based on the neuron activity and mutual information (MI), to achieve the appropriate network complexity and maintain overall computational efficiency. The convergence of the algorithm is analyzed in both the dynamic process phase and the phase following the modification of the structure. The proposed FS-RBFNN has been tested and compared to other algorithms by applying it to the problem of identifying a nonlinear dynamic system. Experimental results show that the FS-RBFNN can be used to design an RBF structure which has fewer hidden neurons; the training time is also much faster. The algorithm is applied for predicting water quality in the wastewater treatment process. The results demonstrate its effectiveness.


Subject(s)
Neural Networks, Computer , Water Quality , Algorithms , Nonlinear Dynamics
16.
Int J Neural Syst ; 20(1): 63-74, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20180254

ABSTRACT

This paper presents a repair algorithm for the design of a Radial Basis Function (RBF) neural network. The proposed repair RBF (RRBF) algorithm starts from a single prototype randomly initialized in the feature space. The algorithm has two main phases: an architecture learning phase and a parameter adjustment phase. The architecture learning phase uses a repair strategy based on a sensitivity analysis (SA) of the network's output to judge when and where hidden nodes should be added to the network. New nodes are added to repair the architecture when the prototype does not meet the requirements. The parameter adjustment phase uses an adjustment strategy where the capabilities of the network are improved by modifying all the weights. The algorithm is applied to two application areas: approximating a non-linear function, and modeling the key parameter, chemical oxygen demand (COD) used in the waste water treatment process. The results of simulation show that the algorithm provides an efficient solution to both problems.


Subject(s)
Algorithms , Computer Simulation , Neural Networks, Computer , Oxygen Consumption , Chemical Phenomena , Humans , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...