Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 67: 101832, 2021 01.
Article in English | MEDLINE | ID: mdl-33166776

ABSTRACT

Segmentation of medical images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) used for visualizing diseased atrial structures, is a crucial first step for ablation treatment of atrial fibrillation. However, direct segmentation of LGE-MRIs is challenging due to the varying intensities caused by contrast agents. Since most clinical studies have relied on manual, labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the 2018 Left Atrium Segmentation Challenge using 154 3D LGE-MRIs, currently the world's largest atrial LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show that the top method achieved a Dice score of 93.2% and a mean surface to surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved superior results than traditional methods and machine learning approaches containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for atrial LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Furthermore, the findings from this study can potentially be extended to other imaging datasets and modalities, having an impact on the wider medical imaging community.


Subject(s)
Benchmarking , Gadolinium , Algorithms , Heart Atria/diagnostic imaging , Humans , Magnetic Resonance Imaging
2.
Med Phys ; 46(5): 2074-2084, 2019 May.
Article in English | MEDLINE | ID: mdl-30861147

ABSTRACT

PURPOSE: Atrial fibrillation (AF) originating from the left atrium (LA) and pulmonary veins (PVs) is the most prevalent cardiac electrophysiological disorder. Accurate segmentation and quantification of the LA chamber, PVs, and left atrial appendage (LAA) provides clinically important references for treatment of AF patients. The purpose of this work is to realize objective segmentation of the LA chamber, PVs, and LAA in an accurate and fully automated manner. METHODS: In this work, we proposed a new approach, named joint-atlas-optimization, to segment the LA chamber, PVs, and LAA from magnetic resonance angiography (MRA) images. We formulated the segmentation as a single registration problem between the given image and all N atlas images, instead of N separate registration between the given image and an individual atlas image. Level sets was applied to refine the atlas-based segmentation. Using the publically available LA benchmark database, we compared the proposed joint-atlas-optimization approach to the conventional pairwise atlas approach and evaluated the segmentation performance in terms of Dice index and surface-to-surface (S2S) distance to the manual ground truth. RESULTS: The proposed joint-atlas-optimization method showed systemically improved accuracy and robustness over the pairwise atlas approach. The Dice of LA segmentation using joint-atlas-optimization was 0.93 ± 0.04, compared to 0.91 ± 0.04 by the pairwise approach (P < 0.05). The mean S2S distance was 1.52 ± 0.58 mm, compared to 1.83 ± 0.75 mm (P < 0.05). In particular, it produced significantly improved segmentation accuracy of the LAA and PVs, the small distant part in LA geometry that is intrinsically difficult to segment using the conventional pairwise approach. The Dice of PVs segmentation was 0.69 ± 0.16, compared to 0.49 ± 0.15 (P < 0.001). The Dice of LAA segmentation was 0.91 ± 0.03, compared to 0.88 ± 0.05 (P < 0.01). CONCLUSION: The proposed joint-atlas optimization method can segment the complex LA geometry in a fully automated manner. Compared to the conventional atlas approach in a pairwise manner, our method improves the performance on small distal parts of LA, for example, PVs and LAA, the geometrical and quantitative assessment of which is clinically interesting.


Subject(s)
Atlases as Topic , Atrial Appendage/diagnostic imaging , Heart Atria/diagnostic imaging , Image Processing, Computer-Assisted/standards , Joint Diseases/diagnostic imaging , Magnetic Resonance Angiography/methods , Pulmonary Veins/diagnostic imaging , Databases, Factual , Humans , Image Processing, Computer-Assisted/methods , Pattern Recognition, Automated
SELECTION OF CITATIONS
SEARCH DETAIL
...