Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spine Deform ; 12(3): 595-602, 2024 May.
Article in English | MEDLINE | ID: mdl-38451404

ABSTRACT

PURPOSE: To optimize the biomechanical performance of S2AI screw fixation using a genetic algorithm (GA) and patient-specific finite element analysis integrating bone mechanical properties. METHODS: Patient-specific pelvic finite element models (FEM), including one normal and one osteoporotic model, were created from bi-planar multi-energy X-rays (BMEXs). The genetic algorithm (GA) optimized screw parameters based on bone mass quality (BM method) while a comparative optimization method maximized the screw corridor radius (GEO method). Biomechanical performance was evaluated through simulations, comparing both methods using pullout and toggle tests. RESULTS: The optimal screw trajectory using the BM method was more lateral and caudal with insertion angles ranging from 49° to 66° (sagittal plane) and 29° to 35° (transverse plane). In comparison, the GEO method had ranges of 44° to 54° and 24° to 30° respectively. Pullout forces (PF) using the BM method ranged from 5 to 18.4 kN, which were 2.4 times higher than the GEO method (2.1-7.7 kN). Toggle loading generated failure forces between 0.8 and 10.1 kN (BM method) and 0.9-2.9 kN (GEO method). The bone mass surrounding the screw representing the fitness score and PF of the osteoporotic case were correlated (R2 > 0.8). CONCLUSION: Our study proposed a patient-specific FEM to optimize the S2AI screw size and trajectory using a robust BM approach with GA. This approach considers surgical constraints and consistently improves fixation performance.


Subject(s)
Algorithms , Bone Screws , Finite Element Analysis , Ilium , Humans , Biomechanical Phenomena , Ilium/surgery , Sacrum/surgery , Sacrum/diagnostic imaging , Spinal Fusion/methods , Spinal Fusion/instrumentation , Female , Osteoporosis/surgery , Adult , Male
2.
Article in English | MEDLINE | ID: mdl-37975562

ABSTRACT

The increasing prevalence of adult spinal deformity requires long spino-pelvic instrumentation, but pelvic fixation faces challenges due to distal forces and reduced bone quality. Bi-planar multi-energy X-rays (BMEX) were used to develop a patient-specific finite element model (FEM) for evaluating pelvic fixation. Calibration involved 10 patients, and an 81-year-old female test case was used for FEM customization and pullout simulation validation. Calibration yielded a root mean square error of 74.7 mg/cm3 for HU. The simulation accurately replicated the experimental pullout test with a force of 565 N, highlighting the method's potential for optimizing biomechanical performance for pelvic fixation.

SELECTION OF CITATIONS
SEARCH DETAIL
...