Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(25): e2300642, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36932933

ABSTRACT

Bonding simple building blocks to create crystalline materials with design has been sophisticated in the molecular world, but this is still very challenging for anisotropic nanoparticles or colloids, because the particle arrangements, including position and orientation, cannot be manipulated as expected. Here biconcave polystyrene (PS) discs to present a shape self-recognition route are used, which can control both the position and orientation of particles during self-assembly by directional colloidal forces. An unusual but very challenging two-dimensional (2D) open superstructure-tetratic crystal (TC)-is achieved. The optical properties of the 2D TCs are studied by the finite difference time domain method, showing that the PS/Ag binary TC can be used to modulate the polarization state of the incident light, for example, converting the linearly polarized light into left-handed or right-handed circularly polarized light. This work paves an important way for self-assembling many unprecedented crystalline materials.

2.
Langmuir ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36621841

ABSTRACT

Anisotropic shape-tunable polymer particles have gained significant attention for their wide applications, and their performances are usually strongly correlated to their shapes. In contrast to convex particles, the synthesis of highly uniform concave polymer particles remains a great challenge. Here, we present a facile and effective route to synthesize biconcave polystyrene (PS) discs by swelling-induced phase separation of hydrophilically modified PS microspheres and report an unexpected finding that even a tiny amount of hydrophilic units that were incorporated into PS microspheres can significantly change the shape of phase interfaces, resulting in the transformation of disc shapes from convex to flat to concave. This is realized by several typical hydrophilic monomers, such as sodium styrene sulfonate (NaSS), acrylic acid (AA), or (2-(methacryloyloxy)ethyl)trimethylammonium chloride (METAC). The effect of the distribution of hydrophilic units in microspheres was investigated, and the mechanism of shape tuning has been discussed. The curvatures of the bottom surfaces of discs show a strong correlation to the content of hydrophilic units. In particular, we emphasize that the shape control method is general since it does not depend on specific hydrophilic units. This research paves the way for precisely structuring polymer particle shapes, which is important for polymer particles to be used for self-assembly, diffusion, rheology, transport, filler, and many other applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...