Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Cell Biol Toxicol ; 40(1): 25, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691184

ABSTRACT

Lung cancer is a common malignancy that is frequently associated with systemic metabolic disorders. Early detection is pivotal to survival improvement. Although blood biomarkers have been used in its early diagnosis, missed diagnosis and misdiagnosis still exist due to the heterogeneity of lung cancer. Integration of multiple biomarkers or trans-omics results can improve the accuracy and reliability for lung cancer diagnosis. As metabolic reprogramming is a hallmark of lung cancer, metabolites, specifically lipids might be useful for lung cancer detection, yet systematic characterizations of metabolites in lung cancer are still incipient. The present study profiled the polar metabolome and lipidome in the plasma of lung cancer patients to construct an inclusive metabolomic atlas of lung cancer. A comprehensive analysis of lung cancer was also conducted combining metabolomics with clinical phenotypes. Furthermore, the differences in plasma lipid metabolites were compared and analyzed among different lung cancer subtypes. Alcohols, amides, and peptide metabolites were significantly increased in lung cancer, while carboxylic acids, hydrocarbons, and fatty acids were remarkably decreased. Lipid profiling revealed a significant increase in plasma levels of CER, PE, SM, and TAG in individuals with lung cancer as compared to those in healthy controls. Correlation analysis confirmed the association between a panel of metabolites and TAGs. Clinical trans-omics studies elucidated the complex correlations between lipidomic data and clinical phenotypes. The present study emphasized the clinical importance of lipidomics in lung cancer, which involves the correlation between metabolites and the expressions of other omics, ultimately influencing clinical phenotypes. This novel trans-omics network approach would facilitate the development of precision therapy for lung cancer.


Subject(s)
Lung Neoplasms , Metabolomics , Precision Medicine , Humans , Lung Neoplasms/blood , Lung Neoplasms/metabolism , Metabolomics/methods , Precision Medicine/methods , Biomarkers, Tumor/blood , Male , Middle Aged , Female , Lipidomics/methods , Phenotype , Metabolome , Aged , Lipids/blood
2.
Clin Transl Med ; 14(5): e1679, 2024 May.
Article in English | MEDLINE | ID: mdl-38706045

ABSTRACT

Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.


Subject(s)
Lipidomics , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Lipidomics/methods , Smoking/adverse effects , Smoking/metabolism , Lipid Metabolism/genetics , Male , Female , Metabolomics/methods , Middle Aged
3.
J Lipids ; 2024: 6730504, 2024.
Article in English | MEDLINE | ID: mdl-38312939

ABSTRACT

Background: Advanced lung cancer that contributes to a heavy burden on medical institutions is the leading cause of cancer-related death and is often accompanied by metabolic disorders. In this study, we aimed to explore the biomarkers of diagnosis and radiotherapy response in non-small-cell lung cancer (NSCLC) patients by plasma lipidomics analysis. Method: Using triple-quadrupole mass spectrometer analysis, our research characterized the plasma lipid metabolomics profile of 25 healthy controls and 31 advanced NSCLC patients in each of three different radiotherapy phases. Results: The results showed altered lipid elements and concentrations among NSCLC patients with different radiotherapy phases, NSCLC subtypes, and different radiotherapeutic responses. We found that compared to the healthy controls, myelin-associated glycoprotein (MAG), phosphatidylinositol (PI), and phosphatidylserine (PS) were mainly and significantly altered lipid elements (> twofold, and p < 0.05) among NSCLC patients with different radiotherapy phases. Through comparison of lipid elements between bad and good responses of NSCLC patients with radiotherapy, the obviously declined phosphatidylglycerol (PG 18 : 0/14 : 0, 18 : 1/18 : 3, and 18 : 0/20 : 1) or markedly elevated PI (20 : 0/22 : 5 and 18 : 2/22 : 4) and phosphatidic acid (PA 14 : 0/20 : 4, 14 : 0/20 : 3, and 18 : 2/22 : 4) could indicate poor therapeutic response for NSCLC patients. The results of ROC curve analysis suggested that PG (18 : 0/20 : 1 and 18 : 0/14 : 0) could clearly predict the radiotherapeutic response for NSCLC patients, and PS (18 : 0/20 : 0) and cholesterol were the first two lipid components with the most potential for the diagnosis of advanced NSCLC. Conclusion: Our results indicated that plasma lipidomics profiling might have a vital value to uncover the heterogeneity of lipid metabolism in healthy people and advanced NSCLC patients with different radiotherapy phase, and further to screen out radiotherapeutic response-specific biomarkers.

4.
J Cell Mol Med ; 27(24): 3980-3994, 2023 12.
Article in English | MEDLINE | ID: mdl-37855260

ABSTRACT

Co-transplantation of mesenchymal stem cells (MSCs) with telocytes (TCs) was found to have therapeutic effects, although the mechanism of intercellular communication is still unknown. Our current studies aim at exploring the potential molecular mechanisms of TCs interaction and communication with MSCs with a focus on integrin beta1 (ITGB1) in TCs. We found that the co-culture of MSCs with ITGB1-deleted TCs (TCITGB1-ko ) changed the proliferation, differentiation and growth dynamics ability of MSC in responses to LPS or PI3K inhibitor. Changes of MSC proliferation and apoptosis were accompanied with the dysregulation of cytokine mRNA expression in MSCs co-cultured with TCITGB1-ko during the exposure of PI3Kα/δ/ß inhibitor, of which IL-1ß, IL-6 and TNF-α increased, while IFN-γ, IL-4 and IL-10 decreased. The responses of PI3K p85, PI3K p110 and pAKT of MSCs co-cultured with TCITGB1-ko to LPS or PI3K inhibitor were opposite to those with ITGB1-presented TCs. The intraperitoneal injection of TCITGB1-ko , TCvector or MSCs alone, as well as the combination of MSCs with TCITGB1-ko or TCvector exhibited therapeutic effects on LPS-induced acute lung injury. Thus, our data indicate that telocyte ITGB1 contributes to the interaction and intercellular communication between MSCs and TCs, responsible for influencing other cell phenomes and functions.


Subject(s)
Acute Lung Injury , Mesenchymal Stem Cells , Telocytes , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Telocytes/metabolism , Mesenchymal Stem Cells/metabolism , Cell Proliferation , Lung/metabolism
5.
J Transl Med ; 21(1): 540, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573325

ABSTRACT

BACKGROUND: Cyclooxygenase (COX)-2 is a rate-limiting enzyme in the biosynthesis of prostanoids, which is mostly inducible by inflammatory cytokines. The participation of COX-2 in the maturation of megakaryocytes has been reported but barely studied in primary immune thrombocytopenia (ITP). METHODS: The expressions of COX-2 and Caspase-1, Caspase-3 and Caspase-3 p17 subunit in platelets from ITP patients and healthy controls (HC), and the expressions of COX-2 and CD41 in bone marrow (BM) of ITP patients were measured and analyzed for correlations. The effects of COX-2 inhibitor on megakaryopoiesis and thrombopoiesis were assessed by in vitro culture of Meg01 cells and murine BM-derived megakaryocytes and in vivo experiments of passive ITP mice. RESULTS: The expression of COX-2 was decreased and Caspase-1 and Caspase-3 p17 were increased in platelets from ITP patients compared to HC. In platelets from ITP patients, the COX-2 expression was positively correlated with platelet count and negatively correlated to the expression of Caspase-1. In ITP patients BM, the expression of CD41 was positively correlated with the expression of COX-2. COX-2 inhibitor inhibited the count of megakaryocytes and impaired the maturation and platelet production in Meg01 cells and bone marrow-derived megakaryocytes. COX-2 inhibitor aggravated thrombocytopenia and damaged megakaryopoiesis in ITP murine model. CONCLUSION: COX-2 plays a vital role in the physiologic and pathologic conditions of ITP by intervening the survival of platelets and impairing the megakaryopoiesis and thrombopoiesis of megakaryocytes.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Thrombopoiesis , Animals , Mice , Blood Platelets/metabolism , Caspase 3/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors , Megakaryocytes/metabolism , Thrombopoiesis/physiology
7.
Cell Biol Toxicol ; 39(6): 2937-2952, 2023 12.
Article in English | MEDLINE | ID: mdl-37261679

ABSTRACT

We present an integrated analysis of the clinical measurements, immune cells, and plasma lipidomics of 2000 individuals representing different age stages. In the study, we explore the interplay of systemic lipids metabolism and circulating immune cells through in-depth analysis of immune cell phenotype and function in peripheral dynamic lipids environment. The population makeup of circulation lymphocytes and lipid metabolites changes dynamically with age. We identified a major shift between young group and middle age group, at which point elevated, immune response is accompanied by the elevation of specific classes of peripheral phospholipids. We tested the effects in mouse model and found that 10-month-dietary added phospholipids induced T-cell senescence. However, the chronic malignant disease, the crosstalk between systemic metabolism and immunity, is completely changed. In cancer patients, the unusual plasma cholesteryl esters emerged, and free fatty acids decreased. The study reveals how immune cell classes and peripheral metabolism coordinate during age acceleration and suggests immune senescence is not isolated, and thus, system effect is the critical point for cell- and function-specific immune-metabolic targeting. • The study identifies a major shift of immune phenotype between young group and middle age group, and the immune response is accompanied by the elevation of specific classes of peripheral phospholipids; • The study suggests potential implications for translational studies such as using metabolic drug to regulate immune activity.


Subject(s)
Phospholipids , T-Cell Exhaustion , Middle Aged , Mice , Animals , Humans , Phospholipids/analysis , Phospholipids/metabolism , Fatty Acids/metabolism , Cholesterol Esters
8.
Front Genet ; 14: 1126236, 2023.
Article in English | MEDLINE | ID: mdl-36936419

ABSTRACT

Background: An increasing number of clinicians are experimenting with high-dose radiation. This study focuses on the genomic effects of high-dose single-shot radiotherapy and aims to provide a dynamic map for non-small cell lung cancer (NSCLC). Methods: We used whole-transcriptome sequencing to understand the evolution at molecular levels in A549 and H1299 exposed to 10 Gy X-rays at different times (2, 6, 12, 24, and 48 h) in comparison with the no radiation group. Ingenuity pathway analysis, ceRNA analysis, enrichment analysis, and cell cycle experiments are performed for molecular analyses and function analyses. Results: Whole-transcriptome sequencing of NSCLC showed a significant dynamic change after radiotherapy within 48 h. MiR-219-1-3p and miR-221-3p, miR-503-5p, hsa-miR-455-5p, hsa-miR-29-3p, and hsa-miR-339-5p were in the core of the ceRNA related to time change. GO and KEGG analyses of the top 30 mRNA included DNA repair, autophagy, apoptosis, and ferroptosis pathways. Regulation of the cell cycle-related transcription factor E2F1 might have a key role in the early stage of radiotherapy (2.6 h) and in the later stage of autophagy (24 and 48 h). Functions involving different genes/proteins over multiple periods implied a dose of 10 Gy was related to the kidney and liver pathway. Radiation-induced cell cycle arrest at the G2/M phase was evident at 24 h. We also observed the increased expression of CCNB1 at 24 h in PCR and WB experiments. Conclusion: Our transcriptomic and experimental analyses showed a dynamic change after radiation therapy in 48 h and highlighted the key molecules and pathways in NSCLC after high-dose single-shot radiotherapy.

9.
Front Oncol ; 12: 1039145, 2022.
Article in English | MEDLINE | ID: mdl-36523982

ABSTRACT

Background: Whole-cell tumor vaccines tend to suffer from low immunogenicity. Our previous study showed that irradiated lung cancer cell vaccines in mouse models enhance antitumor efficacy by eliciting an intensive T cells response and improving immunogenicity. Based on these findings, we developed an improved whole-cell tumor vaccine, Autologous Tumor Holo antigEn immuNe Activation (ATHENA). Methods: In this study, we report the successful treatment of a 6-year-old male diagnosed with meningeal rhabdomyosarcoma with pulmonary and liver metastases using ATHENA. After 6 cycles of therapy, PET/CT showed the therapeutic efficacy of ATHENA. We profiled the immune response by single-cell RNA sequencing (scRNA-seq). Flow cytometry analysis was implemented to validate the status transitions of CD8+ T cells. Results: In CD8+ T cells, the exhausted status was weakened after treatment. The exhausted CD4+ T cells shifted towards the central memory phenotype after the treatment. Breg cells were converted to Plasma or Follicular B cells. Survival analysis for pan-cancer and transcription factor analysis indicated that such T cell and B cell transitions represent the recovery of antitumoral adaptive immune response. We validated that the proportion of CD279+CD8+ T cells were reduced and the expression of CD44 molecule was upregulated by flow cytometry assay. Conclusion: Such studies not only show that ATHENA therapy may be a promising alternative treatment for tumor patients but provide a novel idea to analyses the mechanisms of rare cases or personalized cancer treatment.

10.
J Immunol Res ; 2022: 3621496, 2022.
Article in English | MEDLINE | ID: mdl-35928634

ABSTRACT

Background: Recent studies show that myeloid-derived suppressor cells (MDSCs) and M2-like macrophages are involved in the treatment of tumors; however, their therapeutic response role is rarely known in non-small cell lung cancer (NSCLC) during radiotherapy. We aim to explore the dynamic alteration of the circulating MDSCs and M2-like macrophages, to examine their relationship, and to evaluate their therapeutic response value for NSCLC patients in radiotherapy. Methods: Peripheral blood mononuclear cells from healthy controls and NSCLC patients with different radiotherapy phases were isolated to examine the circulating MDSCs and M2-like macrophages by flow cytometry. 40 plasma inflammatory cytokines were measured by multiplex ELISA. Results: In comparison with healthy controls, the percentages of MDSCs and CD68+CD163+M2-like macrophages of NSCLC patients were significantly elevated and were distinctly higher in radiotherapy than in preradiotherapy. MDSCs were correlated positively with CD68+CD163+M2-like macrophages in NSCLC patients in radiotherapy and postradiotherapy. Especially, we found that in comparison with those in the poor group, the percentages of two cells in the good response group were markedly increased during radiotherapy and they had a significantly positive correlation. During radiotherapy, the proportions of MDSCs were clearly increased in adenocarcinoma patients and the percentages of CD68+CD163+M2-like macrophages were markedly elevated in squamous carcinoma patients. We found that after radiotherapy, the expressions of eotaxin, MIP-1ß, MCP-1, and BLC were significantly increased in NSCLC patients. Further results showed that the low levels of eotaxin and TNF RII expression before radiotherapy could predict a good therapeutic response. IL-1ra and MIP-1ß had a positive relation with MDSCs or CD68+CD163+M2-like macrophages in NSCLC patients during radiotherapy, and eotaxin was correlated with CD68+CD163+M2-like macrophages but not MDSCs in NSCLC patients after radiotherapy. Conclusions: MDSCs and CD68+CD163+M2-like macrophages serve as therapeutic response biomarkers and are associated with the expressions of plasma inflammatory cytokines for NSCLC patients during radiotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Myeloid-Derived Suppressor Cells , Antigens, CD , Antigens, Differentiation, Myelomonocytic/metabolism , Biomarkers/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Chemokine CCL4/metabolism , Cytokines/metabolism , Humans , Leukocyte Count , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/pathology , Macrophages/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Receptors, Cell Surface
11.
Clin Transl Immunology ; 11(7): e1399, 2022.
Article in English | MEDLINE | ID: mdl-35782911

ABSTRACT

Objectives: Immune thrombocytopenia (ITP) is an autoimmune disease characterised by impaired platelet production and increased platelet destruction. However, the involvement of neutrophils in ITP is yet to be explored. Methods: B-cell activating factor (BAFF) expression and activation markers of neutrophils, as well as activation of platelets in ITP patients and healthy controls were measured. The interaction of CD62P on platelets and BAFF in neutrophils was analysed by correlation analysis and verified by co-culture. The effects of neutrophils on apoptosis of acquired immune cells were evaluated in co-culture systems with or without belimumab. Results: The BAFF expression and activation of neutrophils were increased in active ITP patients. BAFF levels in neutrophils were positively correlated with CD62P+ platelets and neutrophils produced increased BAFF by interfering with CD62P on platelets. Neutrophils inhibited the apoptosis of CD4+, CD8+ and CD19+ cells dependent on BAFF levels, and belimumab could interrupt the effects of neutrophils. Conclusions: Neutrophils were overactivated in ITP patients and participated in the progression of disease by producing excessive BAFF, which could be regulated by CD62P on platelets. Targeting BAFF by belimumab may be a novel potential therapy for ITP.

12.
Oxid Med Cell Longev ; 2022: 8973509, 2022.
Article in English | MEDLINE | ID: mdl-35847598

ABSTRACT

Radiation-induced lung injury (RILI) is one of the most common, serious, and dose-limiting toxicities of thoracic radiotherapy. A primary cause for this is the radiation-induced cell death. Ferroptosis is a recently recognized form of regulated cell death, characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS). The ROS generated by irradiation might be the original trigger of ferroptosis in RILI. In addition, activation of the P62-Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (NRF2) pathway has been shown to blunt ferroptosis and thus acts as a protective factor. Therefore, this study aimed to explore the protective effect of the P62-Keap1-NRF2 pathway against radiation-induced ferroptosis in alveolar epithelial cells. First, we found that radiation induced ferroptosis in vitro using a RILI cell model, which could be significantly reduced by ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor. Additionally, overexpression of P62 interacted with Keap1 to facilitate the translocation of NRF2 into the nucleus and promote the expression of its target proteins, including quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO1), and ferritin heavy chain 1 (FTH1). In summary, our results demonstrated that the activation of the P62-Keap1-NRF2 pathway prevents radiation-induced ferroptosis in RILI cells, providing a theoretical basis of finding a potential therapeutic approach for RILI.


Subject(s)
Ferroptosis , Lung Injury , Radiation Injuries , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
13.
Front Pharmacol ; 13: 904701, 2022.
Article in English | MEDLINE | ID: mdl-35620287

ABSTRACT

Fluoxetine, one of the latest clinical antidepressants, is reported to have the anti-proliferative effect on cancer cells via immune-related pathways. However, the mechanism is still not known. This study mainly focused on the discovery of the molecular basis of the inhibitory effect of fluoxetine in lung cancer. The specific anti-proliferation effect and autophagy induced by fluoxetine on lung cancer cell were shown in CCK8 and immunofluorescence. The RNA sequence hinted that the endoplasmic reticulum (ER) stress-related protein and mTOR pathway were enriched after fluoxetine treatment. Western blot results revealed that the ER stress pathway was activated by fluoxetine, including PERK, ATF4, and CHOP, while the AKT/mTOR pathway was inhibited. In addition, the transfection of ATF4 siRNA further discovered that ER stress participated in the inhibition of AKT/mTOR pathway and the induction of anti-proliferation and autophagy in the fluoxetine-treated cells. More importantly, fluoxetine was demonstrated to play cytotoxic activity in cancer cells without affecting normal cells. Our results showed that fluoxetine triggered the ATF4-AKT-mTOR signaling pathway to induce cell cycle arrest and autophagy restraining cancer cells' growth in lung cancer. This study found fluoxetine unaffected the proliferation of normal lung epithelial cells, providing safe clinical therapeutic strategies for lung cancer patients with depression.

14.
Front Oncol ; 12: 840616, 2022.
Article in English | MEDLINE | ID: mdl-35359356

ABSTRACT

Background: The prognosis of chronic lymphocytic leukemia (CLL) has been improved dramatically, but there are limited studies focusing on CLL disease burden on a global scale. We aimed to evaluate the accurate assessment of the disease burden of CLL that may provide more detailed epidemiological information for rational policies. Methods: The main source of the data was the Global Burden of Disease (GBD) study 2019. Incident cases, death cases, disability-adjusted life years (DALYs), and their corresponding age-standardized rates (ASRs) from 1990 to 2019 were used to describe the burden of CLL. Data about attributable risk factors were also extracted and analyzed. Bayesian age-period-cohort (BAPC) models were used to assess and project the incidence and mortality rates till 2030. Results: Globally, the incidence of CLL had been increasing. Deaths and DALYs decreased slightly. The burden of death and DALY is affected by socio-demographic index (SDI). The incidence rate, death rate, and DALY rate of CLL increased significantly with age. Male-to-female ratios of incidence rates varied in different SDI quintiles. Smoking, high body mass index, and occupational exposure to benzene or formaldehyde were the potential risk factors related to CLL. Global ASIRs might tend to increase until 2030, while ASDR would decrease until 2030. Conclusion: The disease burden of CLL decreased in higher SDI countries but increased in lower ones. Strategies for early detection of asymptomatic CLL, development of novel drugs, and measures against attributable factors should be implemented to combat CLL burden.

15.
Dis Markers ; 2021: 3766659, 2021.
Article in English | MEDLINE | ID: mdl-34504628

ABSTRACT

OBJECTIVES: Radiosensitivity Index (RSI) can predict intrinsic radiotherapy sensitivity. We analyzed multiomics characteristics in lung squamous cell carcinoma between high and low RSI groups, which may help understand the underlying molecular mechanism of radiosensitivity and guide optional treatment for patients in the future. METHODS: The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data were used to download clinical data, mRNA, microRNA, and lncRNA expression. Differential analyses, including mRNA, miRNA, lncRNA, and G.O. and KEGG, and GSVA analyses, were performed with R. Gene set enrichment analysis was done by GSEA. miRNA-differentially expressed gene network and ceRNA network were analyzed and graphed by the Cytoscape software. RESULTS: In TCGA data, 542 patients were obtained, including 171 in the low RSI group (LRSI) and 371 in the high RSI group (HRSI). In RNAseq, 558 significantly differentially expressed genes (DEGs) were obtained. KRT6A was the most significantly upregulated gene and IDO1 was the most significantly downregulated gene. In miRNAseq, miR-1269a was the most significantly upregulated. In lncRNAseq, LINC01871 was the most upregulated. A 66-pair interaction between differentially expressed genes and miRNAs and an 11-pair interaction between differential lncRNAs and miRNAs consisted of a ceRNA network, of which miR-184 and miR-490-3p were located in the center. In the GEO data, there were 40 DEGs. A total of 17 genes were founded in both databases, such as ADAM23, AHNAK2, BST2, COL11A1, CXCL13, FBN2, IFI27, IFI44L, MAGEA6, and PTGR1. GSVA analysis revealed 31 significant pathways. GSEA found 87 gene sets enriched in HRSI and 91 gene sets in LRSI. G.O. and KEGG of RNA expression levels revealed that these genes were most enriched in T cell activation and cytokine-cytokine receptor interaction. CONCLUSIONS: Patients with lung squamous cell carcinoma have different multiomics characteristics between two groups. These differences may have an essential significance with radiotherapy effect.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/pathology , DNA Methylation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Radiation Tolerance , Aged , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/radiotherapy , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/radiotherapy , Male , MicroRNAs/genetics , Protein Interaction Maps , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
16.
Cancer Manag Res ; 13: 4497-4507, 2021.
Article in English | MEDLINE | ID: mdl-34113175

ABSTRACT

BACKGROUND: Many studies have reported that the inflammatory immune response related to TLR9 signaling activation participates in tumor development and affects the treatment outcome. RUNX3 functions as a tumor suppressor by regulating DNA methylation. RUNX3 protein plays an important role in TGF-ß signaling pathway that is involved in tumor growth inhibition and apoptosis. At present, radiotherapy is still an important treatment in lung cancer, which induces immune response and affects the therapeutic outcome. The role of TLR9 signaling activation and RUNX3 in this process is not clear. METHODS: In this study, we investigated the expression of TLR9 in tumor and RUNX3 in surrounding tissues by immunohistochemical methods and analyzed the relationship on postoperative survival in lung cancer. RESULTS: We found that the high expression of TLR9 was the risk factor in postoperative survival of lung cancer with no difference in lifetime. The high expression of RUNX3 in lung cancer with TLR9 signaling activation was in favor of progression-free survival and overall survival in postoperative radiotherapy. It suggested that RUNX3 played an important role in lung cancer radiotherapy. In order to determine the effect of RUNX3 in lung cancer radiation with TLR9 signaling activation, we introduced 5-Aza-2'-deoxycytidine (5-Aza-CdR) and exposed lung cancer A459 cells repeatedly. The high expression of RUNX3 especially RUNX3-B in cells treated with 5-Aza-CdR was observed. We examined that 5-Aza-CdR induced more cell blocking in G2/M phase in combining irradiation. CONCLUSION: The result implied that it was feasible to improve radiosensitivity of lung cancer with TLR9 signaling activation by increasing RUNX3 expression, and 5-Aza-CdR was an option in this process.

18.
Oncol Rep ; 45(6)2021 06.
Article in English | MEDLINE | ID: mdl-33846802

ABSTRACT

Recent studies have shown that long non­coding RNAs (lncRNAs) are strongly related to the progression of various types of cancer. The lncRNA MIR4435­2 host gene (MIR4435­2HG) has been recently recognized as a tumor­related lncRNA that is upregulated in several tumors. However, its possible functions in head and neck squamous cell carcinoma (HNSCC) remain unclear. In tShe present study, we observed that MIR4435­2HG expression was markedly upregulated in HNSCC tissues based on a Gene Expression Profiling Interactive Analysis dataset. This result was further confirmed in HNSCC tissues and cell lines using quantitative real­time polymerase chain reaction. In addition, the high expression level of MIR4435­2HG was significantly associated with poor disease­free survival and overall survival in all HNSCC cases and was associated with advanced tumor­metastasis­node stage and poor prognosis. In vitro and in vivo assays demonstrated that MIR4435­2HG knockdown suppressed HNSCC cell proliferation and invasion, epithelial­mesenchymal transition (EMT), and tumor growth as determined by Cell Counting Kit­8, Transwell assays and western blotting. Furthermore, MIR4435­2HG affected HNSCC cell proliferation and migration and EMT by modulating the microRNA miR­383­5p to positively regulate the protein expression level of RNA­binding motif protein 3 (RBM3). In conclusion, we provide a detailed analysis of the roles of MIR4435­2HG in HNSCC and identified the MIR4435­2HG/miR­383­5p/RBM3 axis as a potential therapeutic target for HNSCC treatment.


Subject(s)
Head and Neck Neoplasms/genetics , MicroRNAs/metabolism , Neoplasm Recurrence, Local/genetics , RNA-Binding Proteins/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Adult , Aged , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Datasets as Topic , Disease , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/therapy , Humans , Male , MicroRNAs/genetics , Middle Aged , Neoplasm Recurrence, Local/epidemiology , Prognosis , RNA, Long Noncoding , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/therapy , Up-Regulation
19.
Onco Targets Ther ; 14: 867-877, 2021.
Article in English | MEDLINE | ID: mdl-33574680

ABSTRACT

PURPOSE: To investigate the association of human papillomavirus (HPV) status with p16, p53, and TLR9 expression in head and neck squamous cell carcinoma (HNSCC) and to evaluate these proteins as potential surrogate prognostic markers. METHODS: Expression of p16, p53, and TLR9 was assessed by immunohistochemistry, and HPV status was analyzed by in situ hybridization in 85 tumors of patients with HNSCC. Chi-square test was performed to evaluate the correlations of HPV infection with p16, p53, and TLR9 expression. Kaplan-Meier method and Cox regression analyses were applied to evaluate the associations between the expression levels of these proteins and patient outcomes. RESULTS: Overall, 24 of the 85 HNSCC specimens were associated with HPV infection. High expression of p16, p53, and TLR9 in tumor cells was observed in 31.76%, 61.18%, and 49.41% of the specimens, respectively. p16 showed a higher diagnostic odds ratio for the prediction of HPV DNA positivity than p53 and TLR9. Improved 5-year overall and disease-free survival correlated with HPV positivity and high p16, low p53, and low TLR9 expression. Associations with improved outcomes were also observed for marker combinations high p16/low p53 and high p16/low p53/low TLR9. In a multivariate analysis, the high p16/low p53 signature showed the lowest hazard ratio regarding death. CONCLUSION: The expression of p16, p53, and TLR9 in HNSCC is associated with HPV status. High p53 and TLR9 expression may be related to poor outcomes. The two-marker signature high p16/low p53 in tumor cells is a reliable tool for patient survival prognostication in HNSCC.

20.
Cell Biol Toxicol ; 37(2): 209-228, 2021 04.
Article in English | MEDLINE | ID: mdl-32562082

ABSTRACT

Cisplatin-based therapy is a widely used chemotherapeutic regimen for non-small cell lung cancer (NSCLC); however, drug resistance limits its efficacy. Acetyl-11-keto-ß-boswellic acid (AKBA), a bioactive compound from frankincense, has been shown to exert anti-cancer effects. The aim of this study is to explore the potential of AKBA in combination with cisplatin as a new regimen for NSCLC. CCK8 assay and clone formation assay were used to determine the effects of AKBA in combination with cisplatin on cell viability of NSCLC cell lines. A three-dimensional spherification assay was used to simulate in vivo tumor formation. Flow cytometry was performed to examine cell cycle distribution and the percentages of apoptotic cells. The associated proteins and mRNA of cell cycle, apoptosis, and autophagy were measured by western blotting and real-time fluorescence quantitative PCR. Immunofluorescence assay was used to test apoptotic nuclei and autolysosome. Small interfering RNA experiments were used to silence the expression of p21. Combination treatment of AKBA and cisplatin inhibited cell viability, clone formation, and three-dimensional spherification, enhanced G0/G1 phase arrest, increased the percentages of apoptotic cells, and decreased the ratio of positive autolysosomes, compared with cisplatin alone. AKBA in combination with cisplatin suppressed the protein expressions of cyclin A2, cyclin E1, p-cdc2, CDK4, Bcl-xl, Atg5, and LC3A/B, and upregulated p27 and p21 mRNA levels in A549 cells. Downregulation of p21 decreased G0/G1 phase arrest and the percentages of apoptotic cells, and promoted autophagy in NSCLC A549 cells. Our study demonstrates that AKBA enhances the cisplatin sensitivity of NSCLC cells and that the mechanisms involve G0/G1 phase arrest, apoptosis induction, and autophagy suppression via targeting p21-dependent signaling pathway.


Subject(s)
Apoptosis , Autophagy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Checkpoints , Cisplatin/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Lung Neoplasms/pathology , Triterpenes/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Shape/drug effects , Cell Survival/drug effects , Clone Cells , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Spheroids, Cellular/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...