Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(13): 15101-15113, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585111

ABSTRACT

This study provides a comprehensive analysis of the adsorption behaviors and mechanisms of phenol and catechol on magnetic graphene oxide (MGO) nanocomposites based on adsorption experiments, mathematical models, and molecular simulations. Through systematic experiments, the influence of various parameters, including contact time, pH conditions, and ionic strength, on the adsorption efficacy was comprehensively evaluated. The optimal contact time for adsorption was identified as 60 min, with the observation that an increase in inorganic salt concentration adversely affected the MGOs' adsorption capacity for both phenol and catechol. Specifically, MGOs exhibited a superior adsorption performance under mildly acidic conditions. The adsorption isotherm was well represented by the Langmuir model, suggesting monolayer coverage and finite adsorption sites for both pollutants. In terms of adsorption kinetics, a pseudo-first-order kinetic model was the most suitable for describing phenol adsorption, while catechol adsorption conformed more closely to a pseudo-second-order model, indicating distinct adsorption processes for these two similar compounds. Furthermore, this research utilized quantum chemical calculations to decipher the interaction mechanisms at the molecular level. Such calculations provided both a visual representation and a quantitative analysis of the interactions, elucidating the underlying physical and chemical forces governing the adsorption phenomena. The findings could not only offer crucial insights for the treatment of coal industrial wastewater containing phenolic compounds with bridging macroscopic observations with microscopic theoretical explanations but also advance the understanding of material-pollutant interactions in aqueous environments.

2.
RSC Adv ; 10(28): 16709-16717, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-35498857

ABSTRACT

α-, ß-, γ- and 6,6,18-graphdiyne (GDYs) sheets, as well as the corresponding nanotubes (GDYNTs) are investigated systematically by using the self-consistent-field crystal orbital method. The calculations show that the GDYs and GDYNTs with different structures have different electronic properties. The α-GDY sheet is a conductor, while 2D ß-, γ- and 6,6,18-GDYs are semiconductors. The carrier mobilities of ß- and γ-GDY sheets in different directions are almost the same, indicating the isotropic transport characteristics. In addition, the electron mobility is in the order of 106 cm2 V-1 s-1 and it is two orders of magnitude larger than the hole mobility of 2D γ-GDY. However, α- and 6,6,18-GDY sheets have anisotropic mobilities, which are different along different directions. For the 1D tubes, the order of stability is γ-GDYNTs > 6,6,18-GDYNTs > ß-GDYNTs > α-GDYNTs and is independent of the tube chirality and size. ß- and γ-GDYNTs as well as zigzag α- and 6,6,18-GDYNTs are semiconductors with direct bandgaps, while armchair α-GDYNTs are metals, and armchair 6,6,18-GDYNTs change from semiconductors to metals with increasing tube size. The armchair ß- and γ-GDYNTs are more favourable to transport holes, while the corresponding zigzag tubes prefer to transport electrons.

3.
Dalton Trans ; 48(45): 16882-16893, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31621734

ABSTRACT

In this work, the aromatic hydroxylation mechanism of the [Cu2(H-XYL)O2]2+ complex mediated by a peroxo dicopper core and Cu-ligand effects are investigated by using hybrid density functional theory (DFT) and the broken symmetry B3LYP method. Based on the calculated free-energy profiles, we proposed two available mechanisms. The first reaction steps of both mechanisms involve concerted O-O bond cleavage and C-O bond formation and the second step involves the Wagner-Meerwein rearrangement of the substrate by a [1,2] H shift (HA shift from CA to CC) or (HA shift from CA to OA) across the phenyl ring to form stable dienone intermediates, and this is followed by the protonation of bridging oxygen atoms to produce the final hydroxylated dicopper(ii) product. The HA shift from CA to CC mechanism is the energetically most favorable, in which the first reaction step is the rate-limiting reaction, with a calculated free-energy barrier of 19.0 kcal mol-1 and a deuterium kinetic isotope effect of 1.0, in agreement with experimental observations. The calculation also shows that the reaction started from the P-type species of [Cu2(H-XYL)O2]2+ which is capable of mediating the direct hydroxylation of aromatic substrates without the intermediacy of an O-type species. Finally, we designed some new complexes with different Cu-ligands and found the complex that computationally possesses a higher activity in mediating the hydroxylation of the ligand based aromatic substrate; here, Cu loses a pyridyl ligand donor by dissociation, compared to the [Cu2(H-XYL)O2]2+ complex.

4.
J Phys Condens Matter ; 24(18): 185302, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22481241

ABSTRACT

This paper presents ab initio self-consistent field crystal orbital calculations on the structures, stabilities, elastic and electronic properties of the double-wall nanotubes made of SiO(2) nanotubes encapsulated inside zigzag carbon nanotubes based on density functional theory. It is found that formation of the combined systems is energetically favorable when the nearest distance between the two constituents is in the area of the van der Waals effect. The obtained band structures show that all the combined systems are semiconductors with nonzero energy gaps. Based on the deformation potential theory and effective mass approximation, the mobilities of charge carriers are calculated to be in the range of 10(2)-10(4) cm(2) V(-1) s(-1), the same order of magnitude as those of the corresponding zigzag carbon nanotubes. The Young's moduli are also calculated for the combined systems.

5.
J Nanosci Nanotechnol ; 11(12): 11104-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22409065

ABSTRACT

The structures and electronic properties of the peanut-shaped dimers and nanotubes consisted of C50 cages are investigated based on the ab initio self-consistent field molecular and crystal orbital calculations. It is found that the formation of peanut-shaped dimers is energeticlly favorable. The corresponding peanut-shaped nanotubes are semiconductors due to existence of the energy gaps. These peanut-shaped nanotubes are predicted to have smaller Young moduli than the single-walled carbon nanotube. The anionic peanut-shaped nanotubes are also calculated in this paper, as well as the infrared spectra of the peanut-shaped dimers.

SELECTION OF CITATIONS
SEARCH DETAIL
...