Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Zhonghua Zhong Liu Za Zhi ; 46(7): 663-675, 2024 Jul 23.
Article in Chinese | MEDLINE | ID: mdl-39034802

ABSTRACT

Objective: To investigate the influence of circ_BACH2 on the malignant biological behavior of papillary thyroid cancer and its molecular mechanism. Methods: Cancer tissues and paracancer tissues of 51 patients with papillary thyroid carcinoma from the Fourth Central Hospital of Tianjin between 2017 and 2019 were collected. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expressions of circ_BACH2, miR-370-3p and G protein coupled receptor kinase interacting factor 1 (GIT1) mRNA in tissues and cells; flow cytometry to detect cell apoptosis and cell cycle; plate clone formation experiment to detect the number of cell clones; cell counting kit 8 (CCK-8) to detect cell proliferation; Transwell array to detect cell migration and invasion; western blot to detect protein expressions; dual luciferase report experiment to detect the targeting relationship between circ_BACH2, miR-370-3p and GIT1; the nude mouse tumor formation experiment to detect the effect of circ_BACH2 on tumors in mice. Results: Compared with adjacent tissues, the expressions of circ_BACH2 and GIT1 in papillary thyroid cancer tissues was increased, while the expression of miR-370-3p was decreased. Compared with Nthy-ori3-1 cells, the expressions of circ_BACH2 in papillary thyroid cancer cells TPC-1 and SW579 were increased, the mRNA and protein levels of GIT1 were increased, miR-370-3p expression was decreased. The expression level of GIT1 mRNA was negatively correlated with that of miR-370-3p (r=-0.634), and the expression level of circ_BACH2 was positively correlated with that of GIT1 (r=0.635). The expression level of circ_BACH2 was negatively correlated with that of miR-370-3p (r=-0.394, P<0.05). Circ_BACH2 and miR-370-3p has a binding site at the 3' UTR of GIT1. After knocking down circ_BACH2, the proportion of G0/G1 cells in papillary thyroid cancer cells TPC-1 and SW579 was increased, the proportion of S-phase cells was decreased and the proportion of G2/M-phase cells did not change significantly. The cell absorbance value was lower than that in si-NC group. The number of cell clone formation was decreased (43±5 vs 100±6, 54±8 vs 100±9); the cell apoptosis rate was increased [(19.60±2.40)% vs (4.30±0.20)%, (18.10±2.10)% vs (5.10±0.23)%]; cell migration number was decreased (61±7 vs 134±15, 58±6 vs 112±11), the invasion number was also decreased (45±6 vs 113±11, 47±4 vs 92±9); the expressions of Snail and Twist1 were decreased, and the expression of E-cadherin was increased (P<0.000). Inhibition of miR-370-3p expression reversed the effect of circ_BACH2 knockdown on proliferation, migration, invasion and apoptosis of thyroid papillary cancer cells. Overexpression of GIT1 reversed the effects of overexpression of miR-370-3p on proliferation, migration, invasion and apoptosis of thyroid papillary cancer cells. Mice injected with TPC-1 cells stably transfected with sh-circ_BACH2 showed a reduction in tumor volume [(535±91) mm3 vs (857±114) mm3] after 35 days of culture; tumor weight was decreased [(0.62±0.13) mg vs (1.06±0.15) mg, P<0.05]; the expressions of circ_BACH2 and GIT1 were decreased, and the expression of miR-370-3p was increased in nude mouse tumor tissue. Conclusion: Silencing circ_BACH2 may inhibit the proliferation, migration and invasion of papillary thyroid cancer cells in vitro, promote cell apoptosis, and inhibit tumor growth in vivo through targeted regulation of miR-370-3p/GIT1.


Subject(s)
Cell Proliferation , Mice, Nude , MicroRNAs , Thyroid Cancer, Papillary , Thyroid Neoplasms , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Animals , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Mice , Cell Line, Tumor , Apoptosis , RNA, Circular/metabolism , RNA, Circular/genetics , Cell Movement , Gene Expression Regulation, Neoplastic , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
Waste Manag ; 29(2): 544-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18718749

ABSTRACT

This research has applied different chemical activators to mechanically and thermally treated fine fraction (<14 mm) of incinerator bottom ash (IBA), in order to investigate the influences of chemical activators on this new pozzolanic material. IBA has been milled and thermally treated at 800 degrees C (TIBA). The TIBA produced was blended with Ca(OH)(2) and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na(2)SO(4), K(2)SO(4), Na(2)CO(3), K(2)CO(3), NaOH, KOH and CaCl(2) into 100g of binder (TIBA+Ca(OH)(2)). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca(2)Al(2)SiO(7)), wollastonite (CaSiO(3)) and mayenite (Ca(12)Al(14)O(33)) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na(2)CO(3) can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na(2)SO(4), K(2)SO(4), K(2)CO(3), NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl(2) has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca(4)Al(2)O(6)(CO(3))(0.67)(SO(3))(0.33)(H(2)O)(11)) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl(2).


Subject(s)
Environmental Pollutants/chemistry , Incineration , Calcium Hydroxide , Environmental Pollution/prevention & control , Hot Temperature , Materials Testing , Mechanics , Microscopy, Electron, Scanning , Time Factors , X-Ray Diffraction
3.
Environ Sci Technol ; 42(22): 8541-6, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19068845

ABSTRACT

This research has applied kaolin and active carbon (AC) to the investigation of the recovery of aluminum from coal spoil (CS). The kaolin, AC-containing kaolin mixture, and CS have been calcined at 500, 600, 700, 800, and 900 degrees C for 15, 30, 60, and 120 min. The transformation of kaolinite and aluminum extraction that occurred in each calcined sample have been characterized using XRD, TG, IR, and hydrochloric acid leaching methods. The dehydroxylation of kaolinite and the decomposition of metakaolin were influenced by thermal treatment temperature and time. The metakaolin had kept a portion of OH- in its structure until it was calcined at a temperature of 800 degrees C. Under 60 min treatment, new SiO2 phase was able to be formed at 500 degrees C, kaolinite was totally converted to metakaolin at 600 degrees C, and the SiO2 rejoined the reaction at 800 degrees C. The decompositions of CS were similar to those of kaolin mixture containing 20 wt % AC (MKC). The combustion of combustible matter accelerated the decomposition of kaolinite in the CS and MKC. Higher AC content led to lower aluminum extraction. The treatment at 600 degrees C was optimal for both CS and MKC.


Subject(s)
Aluminum/isolation & purification , Kaolin/chemistry , Coal , Hot Temperature , Mongolia
4.
Waste Manag ; 28(10): 1955-62, 2008.
Article in English | MEDLINE | ID: mdl-18023169

ABSTRACT

The fine fraction (<14 mm) of incinerator bottom ash (IBA) obtained from a UK energy from waste plant has been milled and thermally treated at 600, 700, 800 and 880 degrees C. Treated materials have been activated with Ca(OH)(2) (10 wt%) and the setting times and compressive strengths at different curing times measured. In addition to decomposition of CaCO(3) to CaO, thermal treatment increases the content of gehlenite (Ca(2)Al(2)SiO(7)), wollastonite (CaSiO(3)) and mayenite (Ca(12)Al(14)O(33)). Thermally treated samples were significantly more reactive than milled IBA and heating to 700 degrees C produced a material which rapidly set. Silica, gehlenite and wollastonite were the main crystalline phases present in hydrated samples and a mixed sulphate-carbonate AFm-type phase (Ca(4)Al(2)O(6)(CO(3))(0.67)(SO(3))(0.33).11H(2)O) formed. Significant volumes of gas were generated during curing and this produced a macro-porous microstructure that limited strength to 2.8 MPa. The new materials may have potential for use as controlled low-strength materials.


Subject(s)
Incineration , Industrial Waste/analysis , Calcium Compounds/analysis , Calcium Hydroxide/chemistry , Compressive Strength , Hot Temperature , Materials Testing , Microscopy, Electron, Scanning , Time Factors , Volatilization , X-Ray Diffraction
5.
J Hazard Mater ; 139(2): 238-43, 2007 Jan 10.
Article in English | MEDLINE | ID: mdl-16839680

ABSTRACT

This research studied the influence of individual heavy metal on the hydration reactions of major cement clinker phases in order to investigate the performance of cement based stabilization/solidification (S/S) system. Tricalcium silicate (C3S) and tricalcium aluminate (C3A) had been mixed with individual heavy metal hydroxide including Zn(OH)2, Pb(OH)2 and Cu(OH)2, respectively. The influences of these heavy metal hydroxides on the hydration of C3S and C3A have been characterized by X-ray diffraction (XRD) and differential scanning calorimetry-thermogravimetry (DSC-TG). A mixture of Zn(OH)2, Pb(OH)2 and Cu(OH)2 was blended with Portland cement (PC) and evaluated through compressive strength and dynamic leach test. XRD and DSC-TG data show that all the heavy metal hydroxides (Zn(OH)2, Pb(OH)2 and Cu(OH)2) have detrimental effects on the hydration of C3A, but only Zn(OH)2 does to the C3S at early curing ages which can completely inhibit the hydration of C3S due to the formation of CaO(Zn(OH)2).2H2O. Cu6Al2O8CO(3).12H2O, Pb2Al4O4(CO3)(4).7H2O and Zn6Al2O8CO(3).12H2O are formed in all the samples containing C3A in the presence of metal hydroxides. After adding CaSO4 into C3A, the detrimental effect of heavy metals increases due to the coating effect of both calcium aluminate sulphates and heavy metal aluminate carbonates. The influence of heavy metal hydroxide on the hydration of C3S and C3A can be used to predict the S/S performance of Portland cement.


Subject(s)
Calcium Compounds/chemistry , Construction Materials , Hydroxides/chemistry , Metals, Heavy/chemistry , Silicates/chemistry , Water/chemistry , Absorption , Aluminum Compounds/chemistry , Calorimetry, Differential Scanning , X-Ray Diffraction
6.
Waste Manag ; 26(10): 1166-72, 2006.
Article in English | MEDLINE | ID: mdl-16488593

ABSTRACT

The use of coarse recycled concrete aggregates (CRCA) in conjunction with fine recycled concrete aggregates (FRCA) as sub-base materials has been widely studied. Although research results indicate that it is feasible to employ both CRCA and FRCA as granular sub-base, the influence of the unhydrated cement in the adhered mortar of the RCA on the properties of the sub-base materials has not been thoroughly studied. Generally, it is known that the strength of the sub-base materials prepared with RCA increases over time. However, this mechanism, known as the self-cementing properties, is not well understood and is believed to be governed by the properties of the fine portion of the RCA (<5mm). This paper presents an investigation on the cause of the self-cementing properties by measuring X-ray diffraction patterns, pH values, compressive strength and permeability of various size fractions of the FRCA obtained from a commercially operated construction and demolition waste recycling plant. Their influence on the overall sub-base materials was determined. The results indicate that the size fractions of <0.15 and 0.3-0.6mm (active fractions) were most likely to be the principal cause of the self-cementing properties of the FRCA. However, the effects on the properties of the overall RCA sub-base materials were minimal if the total quantity of the active fractions was limited to a threshold by weight of the total fine aggregate.


Subject(s)
Construction Materials/analysis , Refuse Disposal/methods , Hong Kong , Hydrogen-Ion Concentration , Materials Testing , Particle Size , X-Ray Diffraction
7.
Waste Manag ; 26(2): 141-9, 2006.
Article in English | MEDLINE | ID: mdl-15927458

ABSTRACT

Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 microm). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH)2 and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH)2 systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.


Subject(s)
Carbon , Conservation of Natural Resources , Industrial Waste , Power Plants , Waste Management/methods , Calcium Hydroxide/chemistry , Coal , Coal Ash , Compressive Strength , Copper/analysis , Lead/analysis , Particulate Matter , Sewage , Zinc/analysis
8.
J Hazard Mater ; 129(1-3): 290-6, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16242843

ABSTRACT

Stabilization/solidification (S/S) processes are routinely used for the final treatment of hazardous wastes prior to land disposal. Cement-based binder systems with partial replacement of cement by pulverized fuel ash (PFA) are common. In order to predict the long-term leaching characteristics of S/S wastes, it is important to understand the leaching mechanism. This paper presents experimental results from a study that has investigated the leaching behaviour of contaminants from cement-based S/S waste forms. A novel radial leach test (RLT) has been used to study the migration of heavy metals. The results show that contaminants migrate from the inner core of the S/S waste during leaching to the sample surface and accumulate near the edge of the S/S waste. The degree of accumulation is related to the contaminant species and the Ca(OH)2 content.


Subject(s)
Hazardous Waste , Metals, Heavy , Waste Management , Construction Materials
SELECTION OF CITATIONS
SEARCH DETAIL
...