Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Neuroimmunol ; 383: 578144, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37696167

ABSTRACT

Parkinson's disease (PD) is associated with microscopic changes in the brain, particularly substantia nigra (SN). Ganoderma lucidum immunoregulatory protein (rLZ-8) is might confer protective effects against PD. We developed a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine model of PD and determined the effects of rLZ-8 on molecular and cellular components of SN and whole brain tissue. The levels of SOD, GSH-Px, p-JAK2 and p-STAT3 in the brain tissue and SN were downregulated, while IL-6, IL-1ß, and TNF-α and MDA were upregulated. These effects were significantly reversed upon treatment rLZ-8. In summary, oxidative stress and inflammatory response in PD can be alleviated using rLZ-8.

2.
Cell Death Differ ; 30(10): 2322-2335, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37697039

ABSTRACT

Tripartite motif 17 (TRIM17) belongs to a subfamily of the RING-type E3 ubiquitin ligases, and regulates several cellular processes and pathological conditions including cancer. However, its potential function in gastric cancer (GC) remains obscure. Here, we have found TRIM17 mRNA and protein levels are both upregulated in human GC compared with normal specimens, and TRIM17 upregulation indicates poor survival for GC patients. Functionally, TRIM17 was found to act as an oncogene by promoting the proliferation and survival of GC cell lines AGS and HGC-27. Mechanistically, TRIM17 acts to interact with BAX and promote its ubiquitination and proteasomal degradation, leading to a deficiency in BAX-dependent apoptosis in GC cells in the absence and presence of apoptosis stimuli. Moreover, TRIM17 and BAX expression levels are inversely correlated in human GC specimens. Our data thus suggest TRIM17 contributes to gastric cancer survival through regulating BAX protein stability and antagonizing apoptosis, which provides a promising therapeutic target for GC treatment and a biomarker for prognosis.

3.
Oncogene ; 42(39): 2878-2891, 2023 09.
Article in English | MEDLINE | ID: mdl-37596321

ABSTRACT

FBXO28 is a member of F-box proteins that are the substrate receptors of SCF (SKP1, CULLIN1, F-box protein) ubiquitin ligase complexes. Despite the implications of its role in cancer, the function of FBXO28 in epithelial-mesenchymal transition (EMT) process and metastasis for cancer remains largely unknown. Here, we report that FBXO28 is a critical negative regulator of migration, invasion and metastasis in human hepatocellular carcinoma (HCC) in vitro and in vivo. FBXO28 expression is upregulated in human epithelial cancer cell lines relative to mesenchymal counterparts. Mechanistically, by directly binding to SNAI2, FBXO28 functions as an E3 ubiquitin ligase that targets the substrate for degradation via ubiquitin proteasome system. Importantly, we establish a cooperative function for PKA in FBXO28-mediated SNAI2 degradation. In clinical HCC specimens, FBXO28 protein levels positively whereas negatively correlate with PKAα and SNAI2 levels, respectively. Low FBXO28 or PRKACA expression is associated with poor prognosis of HCC patients. Together, these findings elucidate the novel function of FBXO28 as a critical inhibitor of EMT and metastasis in cancer and provide a mechanistic rationale for its candidacy as a new prognostic marker and/or therapeutic target in human aggressive HCC.


Subject(s)
Carcinoma, Hepatocellular , F-Box Proteins , Liver Neoplasms , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , F-Box Proteins/genetics , F-Box Proteins/metabolism , Epithelial-Mesenchymal Transition/genetics , Ubiquitins/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Neoplasm Metastasis , SKP Cullin F-Box Protein Ligases/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
4.
Life Sci ; 257: 118034, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32621923

ABSTRACT

THE HEADINGS AIMS: Levamisole has anti-parasite and antitumor activities, but the anti-lung cancer mechanism has not been studied. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising drug because of the ability to selectively target cancer cells. However, the tolerance of cancer cells to TRAIL limits its antitumor activity. Other drugs combined with TRAIL need to be explored to enhance its antitumor activity. Based on the adjuvant anticancer effect of levamisole on anticancer drugs activity, the antitumor activity of levamisole combined with TRAIL will be investigated. MATERIALS AND METHODS: In vitro and in vivo experiments were employed to investigate the anti-tumor activity. Flow-cytometry analysis, western blotting and siRNA transfection were used to explore the molecular mechanism. KEY FINDINGS: Levamisole decreased the proliferation of lung cancer cells in vitro and in vivo and induced cell cycle arrest in G0/G1 phase. Besides, levamisole also enhanced TRAIL-induced DR4-independent apoptosis by inhibiting the phosphorylation of cJUN. A new cellular protective pathway LC3B-DR4/Erk was also disclosed, in which levamisole only increased the expression of LC3B and then activated the phosphorylation of Erk and increased the expression of DR4, while p-Erk and DR4 inter-regulated. SIGNIFICANCE: Levamisole may be used as an adjuvant of TRAIL in treating lung cancer. The discovery of LC3B-DR4/Erk as a new protective pathway provides a new direction for sensitizing lung cancer cells to TRAIL.


Subject(s)
Levamisole/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Synergism , Female , Humans , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Signal Transduction/drug effects , TNF-Related Apoptosis-Inducing Ligand/metabolism
5.
J Nat Prod ; 82(5): 1391-1395, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31013089

ABSTRACT

Raistrickindole A (1), a new indole diketopiperazine alkaloid containing an unusual pyrazino[1',2':2,3][1,2]oxazino[6,5- b]indole tetraheterocyclic ring system, a new benzodiazepine derivative, raistrickin (2), and the known haenamindole (3) and sclerotigenin (4) were isolated from the marine-derived fungus Penicillium raistrickii IMB17-034. Their structures were elucidated by extensive spectroscopic analyses and TDDFT calculations of the NMR and ECD data. Compounds 1 and 2 showed inhibitory activities against the hepatitis C virus.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Penicillium/chemistry , Antibiotics, Antineoplastic/pharmacology , Cell Line , Cell Line, Tumor , Drug Screening Assays, Antitumor , Fermentation , Humans , Magnetic Resonance Spectroscopy , Molecular Structure
6.
Skelet Muscle ; 9(1): 8, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30922397

ABSTRACT

BACKGROUND: Cancer cachexia as a metabolic syndrome can lead to at least 25% of cancer deaths. The inhibition of muscle atrophy is a main strategy to treat cancer cachexia. In this process, myostatin (MSTN) can exert a dual effect on protein metabolism, including inhibition of protein biosynthesis and enhancement of protein degradation. In this study, we will test the effect on muscle atrophy induced by cancer cachexia of IMB0901, a MSTN inhibitor. METHODS: Two high-throughput screening models against MSTN were developed. By screening, IMB0901, 2-((1-(3,4-dichlorophenyl)-1H-pyrazolo [3,4-d] pyrimidin-4-yl) amino) butan-1-ol, was picked out from the compound library. The in vitro cell model and the C26 animal model of muscle atrophy induced by cancer cachexia were used to determine the pharmacological activity of IMB0901. Whether IMB0901 could inhibit the aggravating effect of doxorubicin on muscle wasting was examined in vitro and in vivo. RESULTS: IMB0901 inhibited the MSTN promoter activity, the MSTN signaling pathway, and the MSTN positive feedback regulation. In atrophied C2C12 myotubes, IMB0901 had a potent efficiency of decreasing MSTN expression and modulating MSTN signaling pathway which was activated by C26-conditioned medium (CM). In C2C12 myotubes, the expressions of three common myotube markers, myosin heavy chain (MyHC), myogenic differentiation 1 (MyoD), and myogenin (MyoG), were downregulated by CM, which could be efficiently reversed by IMB0901 via reduction of ubiquitin-mediated proteolysis and enhancement of AKT/mTOR-mediated protein synthesis. In the C26 animal model, IMB0901 mitigated the weight loss of body, quadricep and liver, and protected the quadriceps cell morphology. Furthermore, IMB0901 decreased the expression of two E3 ligases Atrogin-1 and MuRF-1 in the quadriceps in vivo. At the cellular level, IMB0901 had no influence on anti-tumor effect of three chemotherapeutic agents (cisplatin, doxorubicin, and gemcitabine) and lowered doxorubicin-induced upregulation of MSTN in C2C12 myotubes. IMB0901 did not affect the inhibitory effect of doxorubicin on C26 tumor and delayed the weight loss of muscle and adipose tissue caused by C26 tumor and doxorubicin. CONCLUSIONS: IMB0901 inhibits muscle atrophy induced by cancer cachexia by suppressing ubiquitin-mediated proteolysis and promoting protein synthesis. These findings collectively suggest that IMB0901 is a promising leading compound for the management of muscle atrophy induced by cancer cachexia.


Subject(s)
Cachexia/complications , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Myostatin/antagonists & inhibitors , Myostatin/metabolism , Neoplasms/complications , Animals , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Disease Models, Animal , Down-Regulation , Doxorubicin/pharmacology , HEK293 Cells , Humans , Muscle Proteins/metabolism , Muscular Atrophy/etiology , Promoter Regions, Genetic , Signal Transduction/drug effects , Up-Regulation
7.
Mar Drugs ; 17(1)2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30669360

ABSTRACT

Tetracenomycin X (Tcm X) has been reported to have antitumour activity in various cancers, but there have not been any studies on its activity with respect to lung cancer to date. Therefore, this study aims to investigate the anti-lung cancer activity of Tcm X. In this study, we found that tetracenomycin X showed antitumour activity in vivo and selectively inhibited the proliferation of lung cancer cells without influencing lung fibroblasts. In addition, apoptosis and autophagy did not contribute to the antitumour activity. Tetracenomycin X exerts antitumour activity through cell cycle arrest induced by the downregulation of cyclin D1. To explore the specific mechanism, we found that tetracenomycin X directly induced cyclin D1 proteasomal degradation and indirectly downregulated cyclin D1 via the activation of p38 and c-JUN proteins. All these findings were explored for the first time, which indicated that tetracenomycin X may be a powerful antimitotic class of anticancer drug candidates for the treatment of lung cancer in the future.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Aquatic Organisms/chemistry , Cyclin D1/metabolism , Lung Neoplasms/drug therapy , A549 Cells , Actinobacteria/chemistry , Antibiotics, Antineoplastic/isolation & purification , Antibiotics, Antineoplastic/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , Down-Regulation , Drug Screening Assays, Antitumor , Fibroblasts , Humans , Lung/cytology , MAP Kinase Signaling System/drug effects , Naphthacenes/isolation & purification , Naphthacenes/pharmacology , Naphthacenes/therapeutic use , Proteolysis/drug effects
8.
Cancer Commun (Lond) ; 38(1): 43, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29970185

ABSTRACT

BACKGROUND: Azithromycin is a member of macrolide antibiotics, and has been reported to inhibit the proliferation of cancer cells. However, the underlying mechanisms are not been fully elucidated. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively targets tumor cells without damaging healthy cells. In the present study, we examined whether azithromycin is synergistic with TRAIL, and if so, the underlying mechanisms in colon cancers. METHODS: HCT-116, SW480, SW620 and DiFi cells were treated with azithromycin, purified TRAIL, or their combination. A sulforhoddamine B assay was used to examine cell survival. Apoptosis was examined using annexin V-FITC/PI staining, and autophagy was observed by acridine orange staining. Western blot analysis was used to detect protein expression levels. In mechanistic experiments, siRNAs were used to knockdown death receptors (DR4, DR5) and LC-3B. The anticancer effect of azithromycin and TRAIL was also examined in BALB/c nude mice carrying HCT-116 xenografts. RESULTS: Azithromycin decreased the proliferation of HCT-116 and SW480 cells in a dose-dependent manner. Combination of azithromycin and TRAIL inhibited tumor growth in a manner that could not be explained by additive effects. Azithromycin increased the expressions of DR4, DR5, p62 and LC-3B proteins and potentiated induction of apoptosis by TRAIL. Knockdown of DR4 and DR5 with siRNAs increased cell survival rate and decreased the expression of cleaved-PARP induced by the combination of azithromycin and TRAIL. LC-3B siRNA and CQ potentiated the anti-proliferation activity of TRAIL alone, and increased the expressions of DR4 and DR5. CONCLUSION: The synergistic antitumor effect of azithromycin and TRAIL mainly relies on the up-regulations of DR4 and DR5, which in turn result from LC-3B-involved autophagy inhibition.


Subject(s)
Autophagy/drug effects , Azithromycin/pharmacology , Colonic Neoplasms/drug therapy , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Xenograft Model Antitumor Assays , Animals , Anti-Bacterial Agents/pharmacology , Autophagy/genetics , Cell Line, Tumor , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Drug Synergism , HCT116 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , RNA Interference , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Up-Regulation/drug effects
9.
Amino Acids ; 49(5): 931-941, 2017 05.
Article in English | MEDLINE | ID: mdl-28236246

ABSTRACT

The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been considered to be a promising anti-tumor agent since the discovery of TRAIL-mediated apoptosis specifically on cancer cells. However, TRAIL resistance of tumor cells and patients remains to be an insurmountable obstacle for its clinical application. Here, we expressed TRAIL-related recombinant protein RGD-TRAIL, TRAIL-NGR, and RGD-TRAIL-NGR by fusing tumor targeting peptides RGD and (or) NGR at the N-terminus and C-terminus, respectively, to not only induce apoptosis of cancer cells but also inhibit metastasis. The fusion proteins possessed potent cytotoxicity with approximative IC50 in H460 and A549 cells, while TRAIL-NGR and RGD-TRAIL-NGR appeared to be more effective in HT1080 and PANC-1 cells which were relatively insensitive to TRAIL. A low concentration of fusion proteins, especially RGD-TRAIL-NGR, could inhibit migration of A549 and HT1080 cells in vitro and lung metastasis in HT1080LUC experimental model in vivo, indicating that the recombinant protein maintained the function of both TRAIL and targeting peptide RGD and NGR, which improved the sensitivity of tumor cells to TRAIL.


Subject(s)
Cell Movement/drug effects , Lung Neoplasms/drug therapy , Oligopeptides/genetics , Recombinant Fusion Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , A549 Cells , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cloning, Molecular , Female , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , NIH 3T3 Cells , Neoplasm Metastasis , Oligopeptides/metabolism , Pichia/genetics , Pichia/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Xenograft Model Antitumor Assays
10.
Acta Pharmacol Sin ; 37(12): 1574-1586, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27593221

ABSTRACT

AIM: Honokiol (HNK) is a natural compound isolated from the magnolia plant with numerous pharmacological activities, including inhibiting epithelial-mesenchymal transition (EMT), which has been proposed as an attractive target for anti-tumor drugs to prevent tumor migration. In this study we investigated the effects of HNK on EMT in human NSCLC cells in vitro and the related signaling mechanisms. METHODS: TNF-α (25 ng/mL) in combination with TGF-ß1 (5 ng/mL) was used to stimulate EMT of human NSCLC A549 and H460 cells. Cell proliferation was analyzed using a sulforhodamine B assay. A wound-healing assay and a transwell assay were performed to examine cell motility. Western blotting was used to detect the expression levels of relevant proteins. siRNAs were used to knock down the gene expression of c-FLIP and N-cadherin. Stable overexpression of c-FLIP L (H157-FLIP L) or Lac Z (H157-Lac Z) was also performed. RESULTS: Treatment with TNF-α+TGF-ß1 significantly enhanced the migration of A549 and H460 cells, increased c-FLIP, N-cadherin (a mesenchymal marker), snail (a transcriptional modulator) and p-Smad2/3 expression, and decreased IκB levels in the cells; these changes were abrogated by co-treatment with HNK (30 µmol/L). Further studies demonstrated that expression level of c-FLIP was highly correlated with the movement and migration of NSCLC cells, and the downstream effectors of c-FLIP signaling were NF-κB signaling and N-cadherin/snail signaling, while Smad signaling might lie upstream of c-FLIP. CONCLUSION: HNK inhibits EMT-mediated motility and migration of human NSCLC cells in vitro by targeting c-FLIP, which can be utilized as a promising target for cancer therapy, while HNK may become a potential anti-metastasis drug or lead compound.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Lignans/pharmacology , Lung Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor/drug effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...