Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 106: 117752, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749341

ABSTRACT

Bromodomain protein 4 (BRD4) is a member of the BET family, and its overexpression is closely associated with the development of many tumors. Inhibition of BRD4 shows great therapeutic potential in anti-tumor, and pan-BRD4 inhibitors show adverse effects of dose limiting toxicity and thrombocytopenia in clinical trials. To improve clinical effects and reduce side effects, more efforts have focused on seeking selective inhibitors of BD1 or BD2. Herein, a series of indole-2-one derivatives were designed and synthesized through docking-guided optimization to find BRD4-BD1 selective inhibitors, and their BRD4 inhibitory and antiproliferation activities were evaluated. Among them, compound 21r had potent BRD4 inhibitory activity (the IC50 values of 41 nM and 313 nM in BD1 and BD2 domain), excellent anti-proliferation (the IC50 values of 4.64 ± 0.30 µM, 0.78 ± 0.03 µM, 5.57 ± 1.03 µM against HL-60, MV-4-11 and HT-29 cells), and displayed low toxicity against normal cell GES-1 cells. Further studies revealed that 21r inhibited proliferation by decreasing the expression of proto-oncogene c-Myc, blocking cell cycle in G0/G1 phase, and inducing apoptosis in MV-4-11 cells in a dose-dependent manner. All the results showed that compound 21r was a potent BRD4 inhibitor with BD1 selectivity, which had potential in treatment of leukemia.


Subject(s)
Antineoplastic Agents , Cell Cycle Proteins , Cell Proliferation , Drug Screening Assays, Antitumor , Indoles , Transcription Factors , Humans , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Drug Discovery , Dose-Response Relationship, Drug , Proto-Oncogene Mas , Apoptosis/drug effects , Molecular Docking Simulation , Cell Line, Tumor , Bromodomain Containing Proteins
2.
Bioorg Med Chem ; 74: 117067, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36272186

ABSTRACT

PI3Ks and HDACs play essential roles in the occurrence and progression of leukemia. Herein, a series of novel pyrazin-2(1H)-one derivatives were rationally designed and synthesized as novel dual PI3K and HDAC inhibitors based on scaffold replacement and heterozygous strategies. Most of the target compounds showed potent inhibitory potency to PI3Kα and HDAC6. Especially, compound 9q displayed PI3Kα and HDAC6 inhibitory with IC50 values of 372 nM and 4.5 nM, and anti-proliferative activity against MV4-11 cells with IC50 value of 0.093 ± 0.012 µM. Further mechanistic studies revealed that 9q induced apoptosis, arrested the cell cycle in the G2/M phase, promoted the acetylation of α-tubulin, and blocked the PI3K/AKT/mTOR signal way in MV4-11 cells. All the results demonstrated that 9q was a promising lead candidate for further development of novel PI3K/HDAC dual inhibitors for leukemia treatment.


Subject(s)
Antineoplastic Agents , Leukemia , Humans , Histone Deacetylase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Leukemia/drug therapy , Drug Design , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Molecular Docking Simulation
3.
Eur J Med Chem ; 213: 113192, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33493829

ABSTRACT

Vascular endothelial growth factor-2 (VEGFR-2) plays a pivotal role in tumor angiogenesis. Herein, a library of novel 2-(4-(1H-indazol-6-yl)-1H-pyrazol -1-yl)acetamide derivatives were designed and synthesized as VEGFR-2 inhibitors based on scaffold hopping strategy. These compounds exhibited the excellent inhibitory in both VEGFR-2 and tumor cells proliferation. Especially, compound W13 possessed potent VEGFR-2 inhibition with IC50 = 1.6 nM and anti-proliferation against HGC-27 tumor cells with IC50 = 0.36 ± 0.11 µM, as well as less toxicity against normal GES-1 cells with IC50 = 187.46 ± 10.13 µM. Moreover, W13 obviously inhibited colony formation, migration and invasion of HGC-27 cells by adjusting the expression of MMP-9 and E-cadherin, and induced HGC-27 cells apoptosis by increasing ROS production and regulating the expression of apoptotic proteins. Furthermore, W13 blocked the PI3K-Akt-mTOR signaling pathway in HGC-27 cells. In addition, anti-angiogenesis of W13 was proved by inhibiting tube formation and the expression of p-VEGFR-2 in HUVEC cells. All the results demonstrated that W13 could be developing as a promising anticancer agent for gastric cancer therapy.


Subject(s)
Acetamides/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Acetamides/chemical synthesis , Acetamides/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Bioorg Chem ; 105: 104427, 2020 12.
Article in English | MEDLINE | ID: mdl-33161248

ABSTRACT

Antioxidants have been the subject of intense research interest due to their numerous health benefits. In this work, a series of new conjugates of hydroxytyrosol and coumarin were synthesized and evaluated for their free radical scavenging, toxicity and antioxidant mechanism in vitro. The all target compounds 14a-t exhibited better radical scavenging activity than BHT, hydroxytyrosol, and coumarin in both DPPH radical and ABTS+ radical cation scavenging assays. The structure-activity relationships study indicated that the number and position of hydroxyl groups on the coumarin ring were vital to a good antioxidant capacity. Furthermore, the most promising compound 14q showed less toxicity in hemolysis assay and weaker antiproliferative effects than BHT against normal WI-38 and GES cells, and enhanced viability of H2O2-induced HepG2 cells. Additionally, 14q decreased the apoptotic percentage of HepG2 cells, reduced the ROS produce and LDH release, and improved GSH and SOD levels in H2O2-treated HepG2 cells. Lastly, 14q exhibited more stability than hydroxytyrosol in methanol solution. These results revealed that conjugations of hydroxytyrosol and coumarin show better antioxidant capacity, and are the efficacious approach to finding novel potential antioxidant.


Subject(s)
Antioxidants/pharmacology , Coumarins/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Antioxidants/chemical synthesis , Antioxidants/chemistry , Apoptosis/drug effects , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Cell Line , Cell Survival/drug effects , Coumarins/chemistry , Dose-Response Relationship, Drug , Humans , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Molecular Structure , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacology , Picrates/antagonists & inhibitors , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Sulfonic Acids/antagonists & inhibitors
5.
Eur J Med Chem ; 208: 112780, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32883643

ABSTRACT

Bromodomain protein 4 (BRD4) plays a crucial role in transcriptional regulation and is considered to be a viable drug target for cancer treatment. Herein, we designed and synthesized a series of indole-2-one derivatives through scaffold hopping drug design. Most of the compounds showed potent BRD4 inhibitory activities and anti-proliferation activities in cancer cell lines. Especially, compound 12j exhibited excellent BRD4 inhibitory activities (BD1 IC50 = 19 nM, BD2 IC50 = 28 nM) and anti-proliferation potency with IC50 values of 4.75 µM and 1.35 µM in HT-29 and HL-60 cells, respectively. Additionally, docking studies showed that the hydrophobic pocket next to KAc region and WPF shelf were critical to the activity of the compound. Compound 12j could arrest the cell-cycle progression of HT-29 cells into the G1 phase and reduce the expression of c-Myc. Moreover, compound 12j exhibited favorable oral pharmacokinetic properties. All the results demonstrated that compound 12j was a potent BRD4 inhibitor and had merely potential for colon cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Indoles/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Indoles/chemical synthesis , Indoles/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Proto-Oncogene Proteins c-myc/metabolism , Rats, Wistar , Structure-Activity Relationship , Transcription Factors/metabolism
6.
Bioorg Med Chem Lett ; 30(3): 126885, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31862411

ABSTRACT

In order to explore novel Aurora kinase inhibitors, a series of novel 2,4-disubstituted pyrimidines were designed, synthesized and evaluated their in vitro anti-proliferative activities against a panel of cancerous cell lines (A549, HCT-116 and MCF-7). Among them, compound 12a showed the moderate to high anti-proliferative activities against A549 (IC50 = 12.05 ± 0.45 µM), HCT-116 (IC50 = 1.31 ± 0.41 µM) and MCF-7 (IC50 = 20.53 ± 6.13 µM) cells, as well as the Aurora A and Aurora B inhibitory activities with the IC50 values of 309 nM and 293 nM, respectively. Furthermore, compound 12a induced apoptosis by upregulated the pro-apoptotic proteins Bax and decreased the anti-apoptotic protein Bcl-xl in HCT-116 cells. Moreover, the molecular docking study showed that compound 12a had good binding modes with Aurora A and Aurora B and the bioinformatics prediction discovered that compound 12a exhibited good drug likeness using SwissADME. Taken together, these results indicated that 12a may be a potential anticancer compound that was worthy of further development as Aurora kinase inhibitor.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Apoptosis/drug effects , Aurora Kinase A/metabolism , Aurora Kinase B/metabolism , Binding Sites , Cell Line, Tumor , Drug Design , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Pyrimidines/metabolism , Pyrimidines/pharmacology , Structure-Activity Relationship , bcl-2-Associated X Protein/metabolism
7.
Eur J Med Chem ; 125: 940-951, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27769034

ABSTRACT

A new series of [1,2,4]triazolo[1,5-a]pyrimidine-based LSD1 inhibitors were designed, synthesized, and further evaluated for their cytotoxicity against MGC-803, EC109, A549 and PC-9 cells as well as the ability of inhibiting LSD1. Some of these compounds showed potent inhibition toward LSD1 and selectively inhibited growth of A549 and PC-9 cells. Compound 6l potently inhibited growth of PC-9 cells (IC50 = 0.59 µM), about 4-fold more potent than 5-FU. Further SARs studies led to the identification of compounds 6l-m, which had good growth inhibition against all the tested cancer cell lines and were much more potent than 5-FU and GSK2879552. Besides, compounds 5p, 5q and 6i inhibited LSD1 potently (IC50 = 0.154, 1.19 and 0.557 µM, respectively). Docking studies revealed that compound 5p formed arene-H interactions with Val333 and hydrogen bonds with surrounding Ala331, Met332, and Ala539 residues. Compound 5p significantly inhibited migration of A549 and PC-9 cells in a concentration-dependent manner, but had different effect on the expression of E-cadherin and N-cadherin. The [1,2,4]triazolo[1,5-a]pyrimidine scaffold may serve as a starting point for developing potent LSD1 inhibitors for cancer therapy.


Subject(s)
Histone Demethylases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Binding Sites , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Pyrimidines/chemical synthesis , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...