Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36837221

ABSTRACT

In order to study the effect of the rolling process and aging on the microstructure evolution and mechanical and tribological properties of the material, room-temperature rolling (RTR), cryogenic rolling (CR), and deep cryogenic treatment after rolling (RTR + DCT) experiments were carried out on a Cu-1.0Cr-0.1Zr alloy by a large plastic deformation process. Alloy plates were aged at 550 °C for 60 min. Different rolling processes and aging treatments have different effects on the microstructure and properties of alloy plates. The alloy plate is rolled and deformed, and the grains change from equiaxed to layered. Compared with RTR and RTR + DCT treatment, CR can promote the precipitation of the Cr phase and the degree of grain fragmentation is greater. After aging treatment, the Cu-Zr mesophase compounds in the microstructure increased, the alloys treated with CR and RTR + DCT appeared to be partially recrystallized, and the number of twins in the CR alloy plate was significantly more than that of RTR + DCT. The ultimate tensile strength of the alloy plate reached 553 MPa and the hardness reached 170 HV after cryogenic rolling with 90% deformation, which indicates that CR treatment can further improve the physical properties of the alloy plate. After aging at 550 °C for 60 min, the RTR 90% + DCT alloy plate has a tensile strength of 498 MPa and an elongation of 47.9%, which is three times that of the as-rolled alloy plate. From the research on the tribological properties of alloy plates, we learned that the main wear mechanisms in the wear forms of CR and RTR + DCT alloy plates are adhesive wear and abrasive wear. Adhesive wear is dominant in the early stage, while abrasive wear is the dominant mechanism in the later stage of wear. The friction coefficient of the CR 90% alloy plate in the TD direction is close to 0.55, and the wear rate is 2.9 × 10-4 mm3/Nm, indicating that the CR treatment further improves the wear resistance of the alloy plates.

2.
Polymers (Basel) ; 11(12)2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31805702

ABSTRACT

A highly efficient flame retardant and smoke suppression oligomer, oligo(phenylphosphonic dihydroxypropyl silicone oil) (PPSO), was synthesized by a one-step reaction. The chemical structure of PPSO was confirmed by Fourier transform infrared (FTIR), 31P nuclear magnetic resonance (31P NMR), and 29Si nuclear magnetic resonance (29Si NMR). The flame-retardant effect of PPSO on the polycarbonate (PC) matrix was investigated by limiting oxygen index, UL-94 vertical burning test, and cone calorimetry, respectively. The results showed that PC/PPSO composites passed UL-94 V-0 rate testing with only 1.3 wt. % PPSO. Furthermore, the incorporation of PPSO can suppress the release of smoke. The flame-retardant mechanism was also investigated via thermogravimetric analysis-fourier transform infrared spectroscopy (TG-FTIR), field-emission scanning electronic microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. From the result of pyrolysis gas and char residue, PPSO played a synergistic flame-retardant mechanism including the gas phase and the condensed phase.

3.
Polymers (Basel) ; 11(7)2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31284539

ABSTRACT

A novel flame retardant (HSPCTP) was successfully designed and incorporated into a polycarbonate (PC) matrix. Combining the advantages of cyclotriphosphazene and silicone oil, PC/HSPCTP composites passed UL-94 V-0 rating testing with only 3 wt% HSPCTP, and their LOI value increased from 25.0% to 28.4%. The findings showed that HSPCTP exhibits both gas-phase and solid-phase flame-retardant effects. Furthermore, the incorporation of HSPCTP into PC could suppress the release of smoke. Finally, the flame-retardant mechanism is discussed in depth.

SELECTION OF CITATIONS
SEARCH DETAIL
...