Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Adv Res ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38710468

ABSTRACT

BACKGROUND: Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW: Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.

2.
Adv Sci (Weinh) ; 10(36): e2302874, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973554

ABSTRACT

Under diabetic conditions, blood glucose fluctuations and exacerbated immunopathological inflammatory environments pose significant challenges to periosteal regenerative repair strategies. Responsive immune regulation in damaged tissues is critical for the immune microenvironment, osteogenesis, and angiogenesis stabilization. Considering the high-glucose microenvironment of such acute injury sites, a functional glucose-responsive immunomodulation-assisted periosteal regeneration composite material-PLA(Polylactic Acid)/COLI(Collagen I)/Lipo(Liposome)-APY29 (PCLA)-is constructed. Aside from stimulating osteogenic differentiation, owing to the presence of surface self-assembled type I collagen in the scaffolds, PCLA can directly respond to focal area high-glucose microenvironments. The PCLA scaffolds trigger the release of APY29-loaded liposomes, shifting the macrophages toward the M2 phenotype, inhibiting the release of inflammatory cytokines, improving the bone immune microenvironment, and promoting osteogenic differentiation and angiogenesis. Bioinformatics analyses show that PCLA enhances bone repair by inhibiting the inflammatory signal pathway regulating the polarization direction and promoting osteogenic and angiogenic gene expression. In the calvarial periosteal defect model of diabetic rats, PCLA scaffolds induce M2 macrophage polarization and improve the inflammatory microenvironment, significantly accelerating periosteal repair. Overall, the PCLA scaffold material regulates immunity in fluctuating high-glucose inflammatory microenvironments, achieves relatively stable and favorable osteogenic microenvironments, and facilitates the effective design of functionalized biomaterials for bone regeneration therapy in patients with diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Osteogenesis , Rats , Humans , Animals , Periosteum , Tissue Scaffolds , Immunomodulation , Glucose
3.
Nanoscale ; 15(46): 18941, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37982299

ABSTRACT

Correction for 'Ferromagnetic and half-metallic phase transition by doping in a one-dimensional narrow-bandgap W6PCl17 semiconductor' by Yusen Qiao et al., Nanoscale, 2023, 15, 9835-9842, https://doi.org/10.1039/D3NR01717F.

4.
Ageing Res Rev ; 89: 101981, 2023 08.
Article in English | MEDLINE | ID: mdl-37302756

ABSTRACT

Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.


Subject(s)
Arthritis, Rheumatoid , Drugs, Chinese Herbal , Osteoarthritis , Humans , Aged , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Treatment Outcome , Osteoarthritis/drug therapy
5.
Adv Sci (Weinh) ; 10(20): e2207334, 2023 07.
Article in English | MEDLINE | ID: mdl-37162248

ABSTRACT

Over the last decade, adipose-derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC-based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC-based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC-based therapies are expected to be more tissue-specific and increasingly important in regenerative medicine.


Subject(s)
Plastic Surgery Procedures , Regenerative Medicine , Adipose Tissue/metabolism , Adipocytes , Stem Cells/metabolism
6.
Nanoscale ; 15(22): 9835-9842, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37212729

ABSTRACT

Based on first-principles calculations, we predict a one-dimensional (1D) semiconductor with cluster-type structure, namely phosphorus-centered tungsten chloride W6PCl17. The corresponding single-chain system can be prepared from its bulk counterpart by an exfoliation method and it exhibits good thermal and dynamical stability. 1D single-chain W6PCl17 is a narrow direct semiconductor with a bandgap of 0.58 eV. The unique electronic structure endows single-chain W6PCl17 with the p-type transport characteristic, manifested as a large hole mobility of 801.53 cm2 V-1 s-1. Remarkably, our calculations show that electron doping can easily induce itinerant ferromagnetism in single-chain W6PCl17 due to the extremely flat band feature near the Fermi level. Such ferromagnetic phase transition expectedly occurs at an experimentally achievable doping concentration. Importantly, a saturated magnetic moment of 1µB per electron is obtained over a large range of doping concentrations (from 0.02 to 5 electrons per formula unit), accompanied by the stable existence of half-metallic characteristics. A detailed analysis of the doping electronic structures indicates that the doping magnetism is mainly contributed by the d orbitals of partial W atoms. Our findings demonstrate that single-chain W6PCl17 is a typical 1D electronic and spintronic material expected to be synthesized experimentally in the future.

7.
Genes (Basel) ; 14(2)2023 02 04.
Article in English | MEDLINE | ID: mdl-36833336

ABSTRACT

Temporomandibular joint disorders (TMDs) are conditions that affect the muscles of mastication and joints that connect the mandible to the base of the skull. Although TMJ disorders are associated with symptoms, the causes are not well proven. Chemokines play an important role in the pathogenesis of TMJ disease by promoting chemotaxis inflammatory cells to destroy the joint synovium, cartilage, subchondral bone, and other structures. Therefore, enhancing our understanding of chemokines is critical for developing appropriate treatment of TMJ. In this review, we discuss chemokines including MCP-1, MIP-1α, MIP-3a, RANTES, IL-8, SDF-1, and fractalkine that are known to be involved in TMJ diseases. In addition, we present novel findings that CCL2 is involved in ß-catenin-mediated TMJ osteoarthritis (OA) and potential molecular targets for the development of effective therapies. The effects of common inflammatory factors, IL-1ß and TNF-α, on chemotaxis are also described. In conclusion, this review aims to provide a theoretical basis for future chemokine-targeted therapies for TMJ OA.


Subject(s)
Osteoarthritis , Temporomandibular Joint Disorders , Humans , Temporomandibular Joint Disorders/pathology , Osteoarthritis/pathology , Synovial Membrane/pathology , Tumor Necrosis Factor-alpha/pharmacology
8.
Phys Chem Chem Phys ; 24(31): 18868-18876, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35912920

ABSTRACT

As a versatile platform, one-dimensional (1D) electronic systems host plenty of excellent merits, such as high length-to-diameter ratios, flexible mechanical properties, and manageable electronic characteristics, which endow them with significant potential applications in catalysts, flexible wearable devices, and multifunctional integrated circuits. Herein, based on first-principles calculations, we propose a versatile 1D PdGeS3 nanochain system. Our calculations show that the 1D PdGeS3 nanochain can be synthesized simply from its bulk crystal by exfoliation methods and can stably exist at room temperature. The 1D PdGeS3 nanochain is an indirect semiconductor with a wide bandgap of 2.86 eV, and such a bandgap can be effectively modulated by strain. Remarkably, the electron mobility of the 1D PdGeS3 nanochain reaches as high as 1506 cm2 V-1 s-1, which is one to two orders of magnitude larger than those of most reported 1D materials and even some 2D materials. Such high electron mobility accompanied with low hole mobility endow the 1D PdGeS3 nanochain with the capacity of the separation of carriers. Our work shows that the 1D PdGeS3 nanochain is a promising candidate for applications in novel multifunctional nanoelectronic devices.

9.
Nanoscale ; 14(34): 12386-12394, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-35972044

ABSTRACT

The discovery of novel two-dimensional (2D) materials with excellent electronic and optoelectronic properties have attracted much scientific attention. Based on the first-principles calculations, we predict an unexplored 2D W4PCl11 monolayer, which is potentially strippable from its bulk counterpart with the exfoliation energy of only 0.16 J m-2. The dynamical, thermal, and mechanical stabilities have also been confirmed. Remarkably, W4PCl11 monolayer is direct semiconductor with a bandgap of 1.25 eV, which endows the monolayer with very strong visible-light absorption in the magnitude of 105 cm-1. Meanwhile, the calculated carrier mobilities of W4PCl11 monolayer can reach to 103 cm2 V-1 s-1. Considering the moderate direct bandgap and high carrier mobility, W4PCl11 monolayer should be a superior candidate for the donor material of excitonic solar cells. The estimated power conversion efficiency of the fabricated W4PCl11/Bi2WO6 heterojunction reaches as high as 21.64%, which much superior to those of most recently reported 2D heterojunction. All these outstanding properties accompanied with its experimental feasibility endows W4PCl11 monolayer with promising photovoltaic applications.

10.
J Dent Sci ; 17(3): 1378-1386, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35784155

ABSTRACT

Background/purpose: The temporomandibular joint (TMJ) is a bi-arthrodial joint that is composed of the temporal bone glenoid fossa and the condylar head of the mandible both having fibrocartilaginous articular surfaces. Functional overloading of the TMJ is the main cause of TMJ osteoarthritis (TMJ OA) disease. The aim of this study was to establish immortalized TMJ fibrocartilage cell clones to provide enough cells to adequately investigate the molecular mechanisms studies of TMJ OA. Materials and methods: We have isolated temporomandibular condyle chondrocytes from adult Sprague Dawley rat. The cells were cultured and immortalized by treating with Y-27632, a well-characterized inhibitor of Rho-Associated Kinase (ROCK). Clones were characterized on the basis of cell morphology and analyses of marker gene expression through 45 passages. Results: Cells from the condylar fibrocartilage of the TMJ were successfully immortalized by ROCK inhibitor, retaining a consistent cuboidal cell morphology and the expression of several cell markers of polymorphic cell fate. In addition, they retained phenotype features similar to the primary parental TMJ fibrocartilage cells when the cells were challenged with different cytokines and growth factors. Conclusion: These studies establish a novel immortalized cell line through ROCK inhibitor Y-27632, that retains the polymorphic phenotype of primary cell lines from TMJ fibrocartilage chondrocyte cell through a high number of passages, serving as a valuable preclinical resource for mechanistic in vitro assessment of TMJ health, disease, and regeneration.

11.
Chem Sci ; 13(6): 1759-1773, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35282640

ABSTRACT

This study presents the role of 5d orbitals in the bonding, and electronic and magnetic structure of Ce imido and oxo complexes synthesized with a tris(hydroxylaminato) [((2- t BuNO)C6H4CH2)3N]3- (TriNO x 3-) ligand framework, including the reported synthesis and characterization of two new alkali metal-capped Ce oxo species. X-ray spectroscopy measurements reveal that the imido and oxo materials exhibit an intermediate valent ground state of the Ce, displaying hallmark features in the Ce LIII absorption of partial f-orbital occupancy that are relatively constant for all measured compounds. These spectra feature a double peak consistent with other formal Ce(iv) compounds. Magnetic susceptibility measurements reveal enhanced levels of temperature-independent paramagnetism (TIP). In contrast to systems with direct bonding to an aromatic ligand, no clear correlation between the level of TIP and f-orbital occupancy is observed. CASSCF calculations defy a conventional van Vleck explanation of the TIP, indicating a single-reference ground state with no low-lying triplet excited state, despite accurately predicting the measured values of f-orbital occupancy. The calculations do, however, predict strong 4f/5d hybridization. In fact, within these complexes, despite having similar f-orbital occupancies and therefore levels of 4f/5d hybridization, the d-state distributions vary depending on the bonding motif (Ce[double bond, length as m-dash]O vs. Ce[double bond, length as m-dash]N) of the complex, and can also be fine-tuned based on varying alkali metal cation capping species. This system therefore provides a platform for understanding the characteristic nature of Ce multiple bonds and potential impact that the associated d-state distribution may have on resulting reactivity.

12.
Inorg Chem ; 61(1): 92-104, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34817979

ABSTRACT

Monodentate organophosphorus ligands have been used for the extraction of the uranyl ion (UO22+) for over half a century and have exhibited exceptional extractability and selectivity toward the uranyl ion due to the presence of the phosphoryl group (O═P). Tributyl phosphate (TBP) is the extractant of the world-renowned PUREX process, which selectively recovers uranium from spent nuclear fuel. Trialkyl phosphine oxide (TRPO) shows extractability toward the uranyl ion that far exceeds that for other metal ions, and it has been used in the TRPO process. To date, however, the mechanism of the high affinity of the phosphoryl group for UO22+ remains elusive. We herein investigate the bonding covalency in a series of complexes of UO22+ with TRPO by oxygen K-edge X-ray absorption spectroscopy (XAS) in combination with density functional theory (DFT) calculations. Four TRPO ligands with different R substituents are examined in this work, for which both the ligands and their uranyl complexes are crystallized and investigated. The study of the electronic structure of the TRPO ligands reveals that the two TRPO molecules, irrespective of their substituents, can engage in σ- and π-type interactions with U 5f and 6d orbitals in the UO2Cl2(TRPO)2 complexes. Although both the axial (Oyl) and equatorial (Oeq) oxygen atoms in the UO2Cl2(TRPO)2 complexes contribute to the X-ray absorption, the first pre-edge feature in the O K-edge XAS with a small intensity is exclusively contributed by Oeq and is assigned to the transition from Oeq 1s orbitals to the unoccupied molecular orbitals of 1b1u + 1b2u + 1b3u symmetries resulting from the σ- and π-type mixing between U 5f and Oeq 2p orbitals. The small intensity in the experimental spectra is consistent with the small amount of Oeq 2p character in these orbitals for the four UO2Cl2(TRPO)2 complexes as obtained by Mulliken population analysis. The DFT calculations demonstrate that the U 6d orbitals are also involved in the U-TRPO bonding interactions in the UO2Cl2(TRPO)2 complexes. The covalent bonding interactions between TRPO and UO22+, especially the contributions from U 5f orbitals, while appearing to be small, are sufficiently responsible for the exceptional extractability and selectivity of monodentate organophosphorus ligands for the uranyl ion. Our results provide valuable insight into the fundamental actinide chemistry and are expected to directly guide actinide separation schemes needed for the development of advanced nuclear fuel cycle technologies.

13.
Chem Commun (Camb) ; 57(96): 13028, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34816840

ABSTRACT

Correction for 'Enhanced 5f-δ bonding in [U(C7H7)2]-: C K-edge XAS, magnetism, and ab initio calculations' by Yusen Qiao et al., Chem. Commun., 2021, 57, 9562-9565, DOI: 10.1039/D1CC03414F.

14.
Inorg Chem ; 60(20): 15242-15252, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34569783

ABSTRACT

Using a redox-active dioxophenoxazine ligand, DOPO (DOPO = 2,4,6,8-tetra-tert-butyl-1-oxo-1H-phenoxazine-9-olate), a family of actinide (U, Th, Np, and Pu) and Hf tris(ligand) coordination compounds was synthesized. The full characterization of these species using 1H NMR spectroscopy, electronic absorption spectroscopy, SQUID magnetometry, and X-ray crystallography showed that these compounds are analogous and exist in the form M(DOPOq)2(DOPOsq), where two ligands are of the oxidized quinone form (DOPOq) and the third is of the reduced semiquinone (DOPOsq) form. The electronic structures of these complexes were further investigated using CASSCF calculations, which revealed electronic structures consistent with metals in the +4 formal oxidation state and one unpaired electron localized on one ligand in each complex. Furthermore, f orbitals of the early actinides show a sizable bonding overlap with the ligand 2p orbitals. Notably, this is the first example of a plutonium-ligand radical species and a rare example of magnetic data being recorded for a homogeneous plutonium coordination complex.

15.
Chem Commun (Camb) ; 57(75): 9562-9565, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34546232

ABSTRACT

5f covalency in [U(C7H7)2]- was probed with carbon K-edge X-ray absorption spectroscopy (XAS) and electronic structure theory. The results revealed U 5f orbital participation in δ-bonding in both the ground- and core-excited states; additional 5f ϕ-mixing is observed in the core-excited states. Comparisons with U(C8H8)2 show greater δ-covalency for [U(C7H7)2]-.

16.
Science ; 372(6544): 847-852, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34016778

ABSTRACT

The functionalization of methane, ethane, and other alkanes derived from fossil fuels is a central goal in the chemical enterprise. Recently, a photocatalytic system comprising [CeIVCl5(OR)]2- [CeIV, cerium(IV); OR, -OCH3 or -OCCl2CH3] was disclosed. The system was reportedly capable of alkane activation by alkoxy radicals (RO•) formed by CeIV-OR bond photolysis. In this work, we present evidence that the reported carbon-hydrogen (C-H) activation of alkanes is instead mediated by the photocatalyst [NEt4]2[CeCl6] (NEt4 +, tetraethylammonium), and RO• are not intermediates. Spectroscopic analyses and kinetics were investigated for C-H activation to identify chlorine radical (Cl•) generation as the rate-limiting step. Density functional theory calculations support the formation of [Cl•][alcohol] adducts when alcohols are present, which can manifest a masked RO• character. This result serves as an important cautionary note for interpretation of radical trapping experiments.

17.
Inorg Chem ; 60(9): 6672-6679, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33844509

ABSTRACT

Uranium nitride complexes are attractive targets for chemists as molecular models for the bonding, reactivity, and magnetic properties of next-generation nuclear fuels, but these molecules are uncommon and can be difficult to isolate due to their high reactivity. Here, we describe the synthesis of three new multinuclear uranium nitride complexes, [U(BCMA)2]2(µ-N)(µ-κ1:κ1-BCMA) (7), [(U(BIMA)2)2(µ-N)(µ-NiPr)(K2(µ-η3:η3-CH2CHNiPr)]2 (8), and [U(BIMA)2]2(µ-N)(µ-κ1:κ1-BIMA) (9) (BCMA = N,N-bis(cyclohexyl)methylamidinate, BIMA = N,N-bis(iso-propyl)methylamidinate), from U(III) and U(IV) amidinate precursors. By varying the amidinate ligand substituents and azide source, we were able to influence the composition and size of these nitride complexes. 15N isotopic labeling experiments confirmed the bridging nitride moieties in 7-9 were formed via two-electron reduction of azide. The tetra-uranium cluster 8 was isolated in 99% yield via reductive cleavage of the amidinate ligands; this unusual molecule contains nitrogen-based ligands with formal 1-, 2-, and 3- charges. Additionally, chemical oxidation of the U(IV) precursor U(N3)(BCMA)3 yielded the cationic U(V) species [U(N3)(BCMA)3][OTf]. Magnetic susceptibility measurements confirmed a U(IV) oxidation state for the uranium centers in the three nitride-bridged complexes and provided a comparison of magnetic behavior in the structurally related U(III)-U(IV)-U(V) series U(BCMA)3, U(N3)(BCMA)3, and [U(N3)(BCMA)3][OTf]. At 240 K, the magnetic moments in this series decreased with increasing oxidation state, i.e., U(III) > U(IV) > U(V); this trend follows the decreasing number of 5f valence electrons along this series.

18.
Angew Chem Int Ed Engl ; 59(31): 13037-13043, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32347593

ABSTRACT

We investigate a family of dinuclear dysprosium metallocene single-molecule magnets (SMMs) bridged by methyl and halogen groups [Cp'2 Dy(µ-X)]2 (Cp'=cyclopentadienyltrimethylsilane anion; 1: X=CH3 - ; 2: X=Cl- ; 3: X=Br- ; 4: X=I- ). For the first time, the magnetic easy axes of dysprosium metallocene SMMs are experimentally determined, confirming that the orientation of them are perpendicular to the equatorial plane which is made up of dysprosium and bridging atoms. The orientation of the magnetic easy axis for 1 deviates from the normal direction (by 10.3°) due to the stronger equatorial interactions between DyIII and methyl groups. Moreover, its magnetic axes show a temperature-dependent shifting, which is caused by the competition between exchange interactions and Zeeman interactions. Studies of fluorescence and specific heat as well as ab initio calculations reveal the significant influences of the bridging ligands on their low-lying exchange-based energy levels and, consequently, low-temperature magnetic properties.

19.
Med Sci Monit ; 26: e920766, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32312946

ABSTRACT

BACKGROUND Osteosarcoma is the most common primary tumor of bone. Interleukin-33 (IL-33) is a pro-inflammatory cytokine that also participates in tumor progression. This study aimed to investigate the role of IL-33 in human osteosarcoma cell viability, proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) in vitro and the molecular mechanisms involved. MATERIAL AND METHODS The normal osteoblast cell line, hFOB 1.19, and the human osteosarcoma cell lines SOSP-9607, SAOS2, MG63, and U2OS were studied. The expression of IL-33 mRNA and protein in human osteosarcoma cell lines were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. The effects of IL-33 on human osteosarcoma cell viability, apoptosis, EMT, and the signaling pathways were studied using the MTT assay, flow cytometry, qRT-PCR, and Western blot. RESULTS IL-33 was upregulated in human osteosarcoma cell lines, including U2OS cells. The use of an IL-33 gene plasmid promoted osteosarcoma cell viability, inhibited cell apoptosis, increased the expression of Bcl-2, and reduced the expression of Bax. IL-33 reduced the level of E-cadherin and increased the levels of N-cadherin and matrix metalloproteinase-9 (MMP-9) in osteosarcoma cells at the mRNA and protein level. The use of the IL-33 plasmid increased the protein expression levels of p-AKT and the p-AKT/AKT ratio in osteosarcoma cells, and IL-33 siRNA reversed these findings. CONCLUSIONS IL-33 was highly expressed in human osteosarcoma cells. Down-regulation of IL-33 reduced cell viability and EMT of osteosarcoma cells, and induced cell apoptosis through activation of the PI3K/AKT signaling pathway.


Subject(s)
Bone Neoplasms/metabolism , Interleukin-33/metabolism , Osteosarcoma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/physiology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , Cell Survival/physiology , Epithelial-Mesenchymal Transition , Humans , Interleukin-33/biosynthesis , Interleukin-33/genetics , Osteoblasts/cytology , Osteoblasts/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Up-Regulation
20.
J Cell Physiol ; 235(6): 5378-5385, 2020 06.
Article in English | MEDLINE | ID: mdl-31898815

ABSTRACT

C terminus of Hsc70-interacting protein (CHIP) is a chaperone-dependent and U-box containing E3 ubiquitin ligase. In previous studies, we found that CHIP regulates the stability of multiple tumor necrosis factor receptor-associated factor proteins in bone cells. In Chip global knockout (KO) mice, nuclear factor-κB signaling is activated, osteoclast formation is increased, osteoblast differentiation is inhibited, and bone mass is decreased in postnatal Chip KO mice. To determine the role of Chip in different cell types at different developmental stages, we created Chipflox/flox mice. We then generated Chip conditional KO mice ChipCMV and ChipOsxER and demonstrated defects in skeletal development and postnatal bone growth in Chip conditional KO mice. Our findings indicate that Chip conditional KO mice could serve as a critical reagent for further investigations of functions of CHIP in bone cells and in other cell types.


Subject(s)
Cell Differentiation/genetics , NF-kappa B/genetics , Osteogenesis/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Bone Development/genetics , Humans , Mice , Mice, Knockout , Osteoclasts/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...