Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Plant Sci ; 330: 111667, 2023 May.
Article in English | MEDLINE | ID: mdl-36858208

ABSTRACT

Male and female gametophyte development processes are essential steps in the life cycles of all land plants. Here, we characterized a gene, FviBAG6-A, screened from the Fragaria viridis (2 n = 2x=14) pollen cDNA library and physically interacted with S-RNase. Ubiquitinated of Sa-RNase might be determined by the interaction of FviBAG6-A in the ubiquitin-proteasome system during fertilization. We found that overexpression of FviBAG6-A in Arabidopsis caused shorter silique length, and decreased silique number. Moreover, overexpression of FviBAG6-A in Fragaria vesca (2 n = 2x=14) led to a greatly reduced seed number, with nearly 80% of the seeds aborted. Analyses of paraffin sections and reactive oxygen species (ROS) content revealed that the majority of severe pollen defects were likely due to the early degradation of the tapetum and middle layer as a result of ROS accumulation and abnormal development of the uninucleate megaspore mother. Moreover, the FviBAG6-A interact with the E3 ligase SIZ1 and contribute to the SUMOylation of FviBAG6-A , which may be induced by the high level of ROS content, further promoting gametophyte abortion in strawberry transgenic lines. This study characterized the FviBAG6-A and reveals its novel function in gametophyte development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Fragaria , Arabidopsis Proteins/metabolism , Fragaria/genetics , Fragaria/metabolism , Germ Cells, Plant/metabolism , Diploidy , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Pollen/genetics , Pollen/metabolism , Ribonucleases/metabolism , Ligases/genetics , Nuclear Proteins/metabolism , Molecular Chaperones/genetics
2.
Genes (Basel) ; 14(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36672862

ABSTRACT

In the growth and development of plants, some non-coding small RNAs (sRNAs) not only mediate RNA interference at the post-transcriptional level, but also play an important regulatory role in chromatin modification at the transcriptional level. In these processes, the protein factors Argonaute (AGO), Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) play very important roles in the synthesis of sRNAs respectively. Though they have been identified in many plants, the information about these gene families in strawberry was poorly understood. In this study, using a genome-wide analysis and a phylogenetic approach, 13 AGO, six DCL, and nine RDR genes were identified in diploid strawberry Fragaria vesca. We also identified 33 AGO, 18 DCL, and 28 RDR genes in octoploid strawberry Fragaria × ananassa, studied the expression patterns of these genes in various tissues and developmental stages of strawberry, and researched the response of these genes to some hormones, finding that almost all genes respond to the five hormone stresses. This study is the first report of a genome-wide analysis of AGO, DCL, and RDR gene families in Fragaria spp., in which we provide basic genomic information and expression patterns for these genes. Additionally, this study provides a basis for further research on the functions of these genes and some evidence for the evolution between diploid and octoploid strawberries.


Subject(s)
Fragaria , RNA-Dependent RNA Polymerase , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Fragaria/metabolism , Phylogeny , Genes, Plant
3.
Front Plant Sci ; 13: 927001, 2022.
Article in English | MEDLINE | ID: mdl-36186066

ABSTRACT

Fragaria viridis exhibits S-RNase-based gametophytic self-incompatibility, in which S-RNase is the major factor inhibiting pollen tube growth. However, the pathways involved in and the immediate causes of the inhibition of pollen tube growth remain unknown. Here, interactive RNA sequencing and proteome analysis revealed changes in the transcriptomic and proteomic profiles of F. viridis styles harvested at 0 and 24 h after self-pollination. A total of 2,181 differentially expressed genes and 200 differentially abundant proteins were identified during the pollen development stage of self-pollination. Differentially expressed genes and differentially abundant proteins associated with self-incompatible pollination were further mined, and multiple pathways were found to be involved. Interestingly, the expression pattern of the transcription factor FviYABBY1, which is linked to polar growth, differed from those of other genes within the same family. Specifically, FviYABBY1 expression was extremely high in pollen, and its expression trend in self-pollinated styles was consistent with that of S-RNase. Furthermore, FviYABBY1 interacted with S-RNase in a non-S haplotype way. Therefore, FviYABBY1 affects the expression of polar growth-related genes in self-pollen tubes and is positively regulated by S-RNase.

4.
BMC Genomics ; 23(1): 638, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36076187

ABSTRACT

BACKGROUND: The strawberry fleshy fruit is actually enlarged receptacle tissue, and the successful development of the embryo and endosperm is essential for receptacle fruit set. MicroRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs) play indispensable regulatory roles in plant growth and development. However, miRNAs and phasiRNAs participating in the regulation of strawberry embryo and endosperm development have yet to be explored. RESULTS: Here, we performed genome-wide identification of miRNA and phasiRNA-producing loci (PHAS) in strawberry seeds with a focus on those involved in the development of the early embryo and endosperm. We found that embryos and endosperm have different levels of small RNAs. After bioinformatics analysis, the results showed that a total of 404 miRNAs (352 known and 52 novel) and 156 PHAS genes (81 21-nt and 75 24-nt genes) could be found in strawberry seed-related tissues, of which four and nine conserved miRNA families displayed conserved expression in the endosperm and embryo, respectively. Based on refined putative annotation of PHAS loci, some auxin signal-related genes, such as CM3, TAR2, AFB2, ASA1, NAC and TAS3, were found, which demonstrates that IAA biosynthesis is important for endosperm and embryo development during early fruit growth. Additionally, some auxin signal-related conserved (miR390-TAS3) and novel (miR156-ASA1) trigger-PHAS pairs were identified. CONCLUSIONS: Taken together, these results expand our understanding of sRNAs in strawberry embryo and endosperm development and provide a genomic resource for early-stage fruit development.


Subject(s)
Fragaria , MicroRNAs , Endosperm/genetics , Endosperm/metabolism , Gene Expression Regulation, Plant , Humans , Indoleacetic Acids/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/genetics
5.
Hortic Res ; 8(1): 185, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34333550

ABSTRACT

Strawberry (Fragaria spp.) is a member of the Rosoideae subfamily in the family Rosaceae. The self-incompatibility (SI) of some diploid species is a key agronomic trait that acts as a basic pollination barrier; however, the genetic mechanism underlying SI control in strawberry remains unclear. Two candidate S-RNases (Sa- and Sb-RNase) identified in the transcriptome of the styles of the self-incompatible Fragaria viridis 42 were confirmed to be SI determinants at the S locus following genotype identification and intraspecific hybridization using selfing progenies. Whole-genome collinearity and RNase T2 family analysis revealed that only an S locus exists in Fragaria; however, none of the compatible species contained S-RNase. Although the results of interspecific hybridization experiments showed that F. viridis (SI) styles could accept pollen from F. mandshurica (self-compatible), the reciprocal cross was incompatible. Sa and Sb-RNase contain large introns, and their noncoding sequences (promotors and introns) can be transcribed into long noncoding RNAs (lncRNAs). Overall, the genus Fragaria exhibits S-RNase-based gametophytic SI, and S-RNase loss occurs at the S locus of compatible germplasms. In addition, a type of SI-independent unilateral incompatibility exists between compatible and incompatible Fragaria species. Furthermore, the large introns and neighboring lncRNAs in S-RNase in Fragaria could offer clues about S-RNase expression strategies.

6.
Hortic Res ; 8(1): 141, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34145222

ABSTRACT

Rosa rugosa, commonly known as rugged rose, is a perennial ornamental shrub. It produces beautiful flowers with a mild fragrance and colorful seed pods. Unlike many other cultivated roses, R. rugosa adapts to a wide range of habitat types and harsh environmental conditions such as salinity, alkaline, shade, drought, high humidity, and frigid temperatures. Here, we produced and analyzed a high-quality genome sequence for R. rugosa to understand its ecology, floral characteristics and evolution. PacBio HiFi reads were initially used to construct the draft genome of R. rugosa, and then Hi-C sequencing was applied to assemble the contigs into 7 chromosomes. We obtained a 382.6 Mb genome encoding 39,704 protein-coding genes. The genome of R. rugosa appears to be conserved with no additional whole-genome duplication after the gamma whole-genome triplication (WGT), which occurred ~100 million years ago in the ancestor of core eudicots. Based on a comparative analysis of the high-quality genome assembly of R. rugosa and other high-quality Rosaceae genomes, we found a unique large inverted segment in the Chinese rose R. chinensis and a retroposition in strawberry caused by post-WGT events. We also found that floral development- and stress response signaling-related gene modules were retained after the WGT. Two MADS-box genes involved in floral development and the stress-related transcription factors DREB2A-INTERACTING PROTEIN 2 (DRIP2) and PEPTIDE TRANSPORTER 3 (PTR3) were found to be positively selected in evolution, which may have contributed to the unique ability of this plant to adapt to harsh environments. In summary, the high-quality genome sequence of R. rugosa provides a map for genetic studies and molecular breeding of this plant and enables comparative genomic studies of Rosa in the near future.

7.
Genes (Basel) ; 12(3)2021 03 08.
Article in English | MEDLINE | ID: mdl-33800118

ABSTRACT

Genomic imprinting has drawn increasing attention in plant biology in recent years. At present, hundreds of imprinted genes have been identified in various plants, and some of them have been reported to be evolutionarily conserved in plant species. In this research, 17 candidate genes in Fragaria vesca were obtained based on the homologous imprinted genes in Arabidopsis thaliana and other species. We further constructed reciprocal crosses of diploid strawberry (F. vesca) using the varieties 10-41 and 18-86 as the parents to investigate the conservation of these imprinted genes. Potentially informative single nucleotide polymorphisms (SNPs) were used as molecular markers of two parents obtained from candidate imprinted genes which have been cloned and sequenced. Meanwhile, we analyzed the SNP site variation ratios and parent-of-origin expression patterns of candidate imprinted genes at 10 days after pollination (DAP) endosperm and embryo for the hybrids of reciprocal cross, respectively. A total of five maternally expressed genes (MEGs), i.e., FvARI8, FvKHDP-2, FvDRIP2, FvBRO1, and FvLTP3, were identified in the endosperm, which did not show imprinting in the embryo. Finally, tissues expression analysis indicated that the five imprinted genes excluding FvDRIP2 mainly expressed in the endosperm. This is the first report on imprinted genes of Fragaria, and we provide a simple and rapid method based on homologous conservation to screen imprinted genes. The present study will provide a basis for further study of function and mechanism of genomic imprinting in F. vesca.


Subject(s)
Endosperm , Fragaria , Gene Expression Regulation, Plant , Genes, Plant , Genomic Imprinting , Plant Proteins , Endosperm/genetics , Endosperm/metabolism , Fragaria/genetics , Fragaria/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics
8.
Genes (Basel) ; 11(2)2020 02 06.
Article in English | MEDLINE | ID: mdl-32041308

ABSTRACT

The rapid alkalinization factor (RALF) gene family is essential for the plant growth and development. However, there is little known about these genes among Rosaceae species. Here, we identify 124 RALF-like genes from seven Rosaceae species, and 39 genes from Arabidopsis, totally 163 genes, divided into four clades according to the phylogenetic analysis, which includes 45 mature RALF genes from Rosaceae species. The YISY motif and RRXL cleavage site are typical features of true RALF genes, but some variants were detected in our study, such as YISP, YIST, NISY, YINY, YIGY, YVGY, FIGY, YIAY, and RRVM. Motif1 is widely distributed among all the clades. According to screening of cis-regulatory elements, GO annotation, expression sequence tags (EST), RNA-seq, and RT-qPCR, we reported that 24 RALF genes coding mature proteins related to tissue development, fungal infection, and hormone response. Purifying selection may play an important role in the evolutionary process of RALF-like genes among Rosaceae species according to the result from ka/ks. The tandem duplication event just occurs in four gene pairs (Fv-RALF9 and Fv-RALF10, Md-RALF7 and Md-RALF8, Pm-RALF2 and Pm-RALF8, and Pp-RALF11 and Pp-RALF14) from four Rosaceae species. Our research provides a wide overview of RALF-like genes in seven Rosaceae species involved in identification, classification, structure, expression, and evolution analysis.


Subject(s)
Arabidopsis/genetics , Fragaria/genetics , Gene Expression Regulation, Plant , Genome, Plant , Plant Proteins/genetics , Rosaceae/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Chromosomes, Plant , Fragaria/growth & development , Fragaria/metabolism , Multigene Family , Phylogeny , Plant Proteins/metabolism , Rosaceae/growth & development , Rosaceae/metabolism
9.
Int J Mol Sci ; 20(5)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818833

ABSTRACT

It is clear that the incompatibility system in Fragaria is gametophytic, however, the genetic mechanism behind this remains elusive. Eleven second-generation lines of Fragaria viridis with different compatibility were obtained by manual self-pollination, which can be displayed directly by the level of fruit-set rate. We sequenced two second-generation selfing lines with large differences in fruit-set rate: Ls-S2-53 as a self-incompatible sequencing sample, and Ls-S2-76 as a strong self-compatible sequencing sample. Fragaria vesca was used as a completely self-compatible reference sample, and the genome-wide variations were identified and subsequently annotated. The distribution of polymorphisms is similar on each chromosome between the two sequencing samples, however, the distribution regions and the number of homozygous variations are inconsistent. Expression pattern analysis showed that six candidate genes were significantly associated with self-incompatibility. Using F. vesca as a reference, we focused our attention on the gene FIP2-like (FH protein interacting protein), associated with actin cytoskeleton formation, as the resulting proteins in Ls-S2-53 and Ls-S2-76 have each lost a number of different amino acids. Suppression of FIP2-like to some extent inhibits germination of pollen grains and growth of pollen tubes by reducing F-actin of the pollen tube tips. Our results suggest that the differential distribution of homozygous variations affects F. viridis fruit-set rate and that the fully encoded FIP2-like can function normally to promote F-actin formation, while the new FIP2-like proteins with shortened amino acid sequences have influenced the (in)compatibility of two selfing lines of F. viridis.


Subject(s)
Fragaria/genetics , Genes, Plant , Genetic Association Studies , Genetic Variation , Self-Incompatibility in Flowering Plants/genetics , Sequence Analysis, DNA , Amino Acid Sequence , Crosses, Genetic , Fruit/genetics , Gene Expression Regulation, Plant , Germination , Homozygote , INDEL Mutation/genetics , Molecular Sequence Annotation , Physical Chromosome Mapping , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen Tube/genetics , Pollen Tube/growth & development , Polymorphism, Single Nucleotide/genetics
10.
Genes Genomics ; 40(3): 321-331, 2018 03.
Article in English | MEDLINE | ID: mdl-29892803

ABSTRACT

Polyploidization always induces a series of changes in genome, transcriptome and epigenetics, of which changes in gene expression are the immediate causes of genotype alterations of polyploid plants. In our previous study on strawberry polyploidization, genes related to photosynthesis were found to undergo changes in gene expression and DNA methylation. Therefore, we chose 11 genes that were closely related to plant photosynthesis and analysed their expression during strawberry hybridization and chromosome doubling. Most genes of pentaploids showed expression levels between parents and were more similar to F. × ananassa. Gene expression levels of decaploids were higher than those of pentaploids and F. × ananassa. Different types of photosynthesis-related genes responded differently to hybridization and chromosome doubling. Chloroplast genes and regulatory genes showed complex responses. Structural genes of the photosynthetic system were expressed at a constant level and displayed a clear dosage effect. The methylation levels of one CG site on SIGE, which regulates expression of chloroplast genes, were negatively correlated with gene expression. In pentaploids and decaploids, more transcripts were from F. × ananassa than from F. viridis. The ratio of transcripts from from F. × ananassa to those from F. viridis was close to the ratio (4:1) of the genome of F. × ananassa to that of F. viridis in pentaploids and decaploids, but there were also some exceptions with obvious deviation.


Subject(s)
Fragaria/genetics , Gene Expression Regulation, Plant/genetics , Photosynthesis/genetics , DNA Methylation/genetics , DNA, Plant/genetics , Genome, Plant/genetics , Genotype , Hybridization, Genetic/genetics , Plant Proteins/genetics , Polyploidy , Sequence Analysis, DNA/methods
11.
BMC Genomics ; 19(1): 473, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29914361

ABSTRACT

BACKGROUND: Pear (Pyrus spp.) is an economically important temperate fruit tree worldwide. In the past decade, significant progress has been made in pear molecular genetics based on DNA research, but the number of molecular markers is still quite limited, which hardly satisfies the increasing needs of geneticists and breeders. RESULTS: In this study, a total of 156,396 simple sequence repeat (SSR) loci were identified from a genome sequence of Pyrus bretschneideri 'Dangshansuli'. A total of 101,694 pairs of SSR primers were designed from the SSR loci, and 80,415 of the SSR loci were successfully located on 17 linkage groups (LGs). A total of 534 primer pairs were synthesized and preliminarily screened in four pear cultivars, and of these, 332 primer pairs were selected as clear, stable, and polymorphic SSR markers. Eighteen polymorphic SSR markers were randomly selected from the 332 polymorphic SSR markers in order to perform a further analysis of the genetic diversity among 44 pear cultivars. The 14 European pears and their hybrid materials were clustered into one group (European pear group); 29 Asian pear cultivars were clustered into one group (Asian pear group); and the Zangli pear cultivar 'Deqinli' from Yunnan Province, China, was grouped in an independent group, which suggested that the cultivar 'Deqinli' is a distinct and valuable germplasm resource. The population structure analysis partitioned the 44 cultivars into two populations, Pop 1 and Pop 2. Pop 2 was further divided into two subpopulations. Results from the population structure analysis were generally consistent with the results from the UPGMA cluster analysis. CONCLUSIONS: The results of the present study showed that the use of next-generating sequencing to develop SSR markers is fast and effective, and the developed SSR markers can be utilized by researchers and breeders for future pear improvement.


Subject(s)
Genetic Variation , Genome, Plant , Microsatellite Repeats , Pyrus/genetics , China , Chromosome Mapping , DNA, Plant , Genetic Linkage , Phylogeny , Polymorphism, Genetic
12.
Molecules ; 23(2)2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29462910

ABSTRACT

Pecan (Carya illinoinensis) kernels have a high phenolics content and a high antioxidant capacity compared to other nuts-traits that have attracted great interest of late. Changes in the total phenolic content (TPC), condensed tannins (CT), total flavonoid content (TFC), five individual phenolics, and antioxidant capacity of five pecan cultivars were investigated during the process of kernel ripening. Ultra-performance liquid chromatography coupled with quadruple time-of-flight mass (UPLC-Q/TOF-MS) was also used to analyze the phenolics profiles in mixed pecan kernels. TPC, CT, TFC, individual phenolics, and antioxidant capacity were changed in similar patterns, with values highest at the water or milk stages, lowest at milk or dough stages, and slightly varied at kernel stages. Forty phenolics were tentatively identified in pecan kernels, of which two were first reported in the genus Carya, six were first reported in Carya illinoinensis, and one was first reported in its kernel. The findings on these new phenolic compounds provide proof of the high antioxidant capacity of pecan kernels.


Subject(s)
Antioxidants/chemistry , Carya/chemistry , Phenols/chemistry , Flavonoids/chemistry , Nuts/chemistry , Tannins/chemistry
13.
Hortic Res ; 4: 17053, 2017.
Article in English | MEDLINE | ID: mdl-29118994

ABSTRACT

Pears with red skin are attractive to consumers and provide additional health benefits. Identification of the gene(s) responsible for skin coloration can benefit cultivar selection and breeding. The use of QTL-seq, a bulked segregant analysis method, can be problematic when heterozygous parents are involved. The present study modified the QTL-seq method by introducing a |Δ(SNP-index)| parameter to improve the accuracy of mapping the red skin trait in a group of highly heterozygous Asian pears. The analyses were based on mixed DNA pools composed of 28 red-skinned and 27 green-skinned pear lines derived from a cross between the 'Mantianhong' and 'Hongxiangsu' red-skinned cultivars. The 'Dangshansuli' cultivar genome was used as reference for sequence alignment. An average single-nucleotide polymorphism (SNP) index was calculated using a sliding window approach (200-kb windows, 20-kb increments). Nine scaffolds within the candidate QTL interval were in the fifth linkage group from 111.9 to 177.1 cM. There was a significant linkage between the insertions/deletions and simple sequence repeat markers designed from the candidate intervals and the red/green skin (R/G) locus, which was in a 582.5-kb candidate interval that contained 81 predicted protein-coding gene models and was composed of two subintervals at the bottom of the fifth chromosome. The ZFRI 130-16, In2130-12 and In2130-16 markers located near the R/G locus could potentially be used to identify the red skin trait in Asian pear populations. This study provides new insights into the genetics controlling the red skin phenotype in this fruit.

14.
PeerJ ; 5: e3919, 2017.
Article in English | MEDLINE | ID: mdl-29038765

ABSTRACT

Compared with other members of the family Rosaceae, the chloroplast genomes of Fragaria species exhibit low variation, and this situation has limited phylogenetic analyses; thus, complete chloroplast genome sequencing of Fragaria species is needed. In this study, we sequenced the complete chloroplast genome of F. × ananassa 'Benihoppe' using the Illumina HiSeq 2500-PE150 platform and then performed a combination of de novo assembly and reference-guided mapping of contigs to generate complete chloroplast genome sequences. The chloroplast genome exhibits a typical quadripartite structure with a pair of inverted repeats (IRs, 25,936 bp) separated by large (LSC, 85,531 bp) and small (SSC, 18,146 bp) single-copy (SC) regions. The length of the F. × ananassa 'Benihoppe' chloroplast genome is 155,549 bp, representing the smallest Fragaria chloroplast genome observed to date. The genome encodes 112 unique genes, comprising 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Comparative analysis of the overall nucleotide sequence identity among ten complete chloroplast genomes confirmed that for both coding and non-coding regions in Rosaceae, SC regions exhibit higher sequence variation than IRs. The Ka/Ks ratio of most genes was less than 1, suggesting that most genes are under purifying selection. Moreover, the mVISTA results also showed a high degree of conservation in genome structure, gene order and gene content in Fragaria, particularly among three octoploid strawberries which were F. × ananassa 'Benihoppe', F. chiloensis (GP33) and F. virginiana (O477). However, when the sequences of the coding and non-coding regions of F. × ananassa 'Benihoppe' were compared in detail with those of F. chiloensis (GP33) and F. virginiana (O477), a number of SNPs and InDels were revealed by MEGA 7. Six non-coding regions (trnK-matK, trnS-trnG, atpF-atpH, trnC-petN, trnT-psbD and trnP-psaJ) with a percentage of variable sites greater than 1% and no less than five parsimony-informative sites were identified and may be useful for phylogenetic analysis of the genus Fragaria.

15.
Plant Physiol Biochem ; 119: 33-42, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28843134

ABSTRACT

The dehydration-responsive element binding protein (DREB) family of transcription factors is associated with abiotic stress responses during plant growth and development. This study focussed on the subfamily member DREB1B, which was initially described as highly and specifically responsive to low temperature. However, here it is shown that DREB1B is not only involved in cold tolerance but also other abiotic stress tolerances, such as that of drought. To further understand the genetic improvement effects of the drought tolerance provided by RdreB1BI in transgenic strawberry, drought stress responses of transgenic plants were evaluated at the morphological, physiological, and transcriptional levels. Transactivation assays revealed that RdreB1BI could activate the FvPIP2;1 like 1 promoter. RdreB1BI transgenic plants showed enhanced drought tolerance on the basis of lower rates of electrolyte leakage (EL), higher relative water content (RWC), and less stomatal aperture as well as increased peroxidase (POD) and superoxide dismutase (SOD) activities and less malondialdehyde (MDA) accumulation. The transgenic plants also accumulated higher levels of drought-related regulatory genes and functional gene transcripts, including those of PIP, NAC, RD22, ABI, and NCED. Together, these results demonstrate that RdreB1BI plays an essential role in the regulation of the drought stress response. DREB1B transcription constitutes a useful strategy to exploit in transgenic plants for coping with abiotic stresses, at least cold and drought stresses. The approach may be helpful for genetic engineering horticultural plants to have increased environmental adaptations.


Subject(s)
Aquaporins , Dehydration , Fragaria , Oryza/genetics , Plant Proteins , Plants, Genetically Modified , Transcription Factors , Aquaporins/genetics , Aquaporins/metabolism , Dehydration/genetics , Dehydration/metabolism , Fragaria/genetics , Fragaria/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Transcription Factors/biosynthesis , Transcription Factors/genetics
16.
Plant Physiol Biochem ; 89: 31-43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25686702

ABSTRACT

Dehydration-responsive element-binding (DREB) transcription factors play critical roles in plant stress responses and signal transduction. To further understand how DREB regulates genes expression to promote cold-hardiness, Illumina/Solexa sequencing technology was used to compare the transcriptomes of non-transgenic and rd29A:RdreB1BI transgenic strawberry plants exposed to low temperatures. Approximately 3.5 million sequence tags were obtained from non-transgenic (NT) and transgenic (T) strawberry untreated (C) or low-temperature treated (LT) leaf samples. Over 1000 genes were differentially expressed between the NT-C and T-C plants, and also the NT-C and NT-LT, as well as the T-C and T-LT plants. Analysis of the genes up-regulated following low-temperature treatment revealed that the majority are linked to metabolism, biosynthesis, transcription and signal transduction. Uniquely up-regulated transcription factors as well as anthocyanin biosynthetic pathway genes are discussed. Accumulation of anthocyanin in the stolon and the base of the petiole differed between non-treated NT and T plants, and this correlated with gene expression patterns. The differentially expressed genes that encode transcription factors and anthocyanin enzymes may contribute to the cold hardiness of RdreB1BI transgenic strawberry. The transcriptome data provide a valuable resource for further studies of strawberry growth and development and DREB-mediated gene regulation under low-temperature stress.


Subject(s)
Adaptation, Physiological/genetics , Anthocyanins/genetics , Cold Temperature , Fragaria/genetics , Gene Expression Regulation, Plant , Genes, Plant , Transcription Factors/genetics , Anthocyanins/metabolism , Fragaria/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism , Transcriptome , Up-Regulation
17.
Zhong Yao Cai ; 38(12): 2468-72, 2015 Dec.
Article in Chinese | MEDLINE | ID: mdl-27352527

ABSTRACT

OBJECTIVE: To explore the salt tolerance of Echiancea purpurea and its mechanism. METHODS: Echiancea purpurea was used as test material in this study and six salinity levels (0, 30, 60, 90, 120 and 150 mmol/L NaCl) were set. Effects on seed germination and salt tolerance relevant physiological and biochemical indexes of Echiancea purpurea were studied. RESULTS: Salt stress suppressed the germination of Echiancea purpurea seeds, induced osmotic adjustment substances proline, soluble sugar and K+ to increase, and activities of POD and SOD to rise, and meanwhile resulted in accumulation of Na+ and decrease of K+/Na+. CONCLUSION: Echiancea purpurea can tolerant salt stress to a certain degree, but in case of high salt concentrations, severe salt injury would remarkably suppress the growth of Echinacea purpurea.


Subject(s)
Echinacea/physiology , Salt-Tolerant Plants/physiology , Plants, Medicinal/physiology , Sodium Chloride/chemistry , Stress, Physiological
18.
Mol Biol Rep ; 41(3): 1553-61, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24407603

ABSTRACT

Earlier, we have reported that overexpression of Malus hupehensis Non-expressor of pathogenesis related gene 1 (MhNPR1) gene in tobacco could induce the expression of pathogenesis-related genes and enhance resistance to fungus Botrytis cinerea. In this study, we showed that MhNPR1 can be induced by NaCl, PEG6000, low temperature (4 °C), abscisic acid and apple aphids' treatments in M. hupehensis. Heterogonous expression of MhNPR1 gene in tobacco conferred enhanced resistance to NaCl at the stage of seed germination, and conferred resistance to mannitol at the stage of seed germination and to PEG6000 at the stage of seedlings. Furthermore, overexpression of MhNPR1 in transgenic tobacco led to higher expression levels of osmotic-stress related genes compared with wild-type plants. This was the first report of a novel function of NPR1 that overexpression of MhNPR1 gene has a positive effect on salt and osmotic stress in tobacco, which differs from the function that overexpressing of AtNPR1 gene has a negative effect on dehydration and salt stress in rice.


Subject(s)
Arabidopsis Proteins/genetics , Nicotiana/growth & development , Nicotiana/genetics , Salt Tolerance/genetics , Gene Expression Regulation, Plant , Malus/genetics , Malus/metabolism , Osmotic Pressure , Plants, Genetically Modified , Salts , Sodium Chloride
19.
J Plant Physiol ; 170(7): 696-706, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23394786

ABSTRACT

Low-temperature stress is one of the major abiotic stresses in plants worldwide, and the dehydration responsive element binding protein (DREB) transcription factor induces expression of genes involved in environmental stress tolerance in plants. A proteomic approach based on two-dimensional gel electrophoresis (2-DE) and subsequent mass spectrometric identification was used to study the changes in the leaf proteome profiles of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low-temperature conditions. By comparing the proteomic profiles, we located 21 protein spots that were reproducibly up- or down-regulated by more than twofold between transgenic and non-transgenic strawberries. Eight identified proteins function in energy and metabolism, four in biosynthetic processes, four were stress and defense related, three spots were identified as cold-stress related expressed sequence tags (ESTs), and two were unknown proteins. The change patterns of low-temperature tolerance proteins, including photosynthetic proteins (RuBisCO large subunit and RuBisCO activase), cytoplasmic Cu/Zn-superoxide dismutase (Cu/Zn-SOD), late embryogenesis abundant protein 14-A (Lea14-A), eukaryotic translation initiation factor 5A (eIF5A), and cold-stress related ESTs, were differentially regulated between non-transgenic and rd29A:RdreB1BI transgenic strawberries. They are likely important gene products in the regulatory network of the RdreB1BI gene. Consequently, this study provides the first characterization of the transgenic strawberry proteome and the predicted target proteins of the RdreB1BI gene by using proteomic approaches.


Subject(s)
Fragaria/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Proteome , Cold Temperature , Databases, Protein , Electrophoresis, Gel, Two-Dimensional , Fragaria/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Stress, Physiological
20.
Mol Biol Rep ; 38(7): 4405-13, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21132385

ABSTRACT

In this study, the expression patterns of four ferritin genes (PpFer1, PpFer2, PpFer3, and PpFer4) in pear were investigated using quantitative real-time PCR. Analysis of tissue-specific expression revealed higher expression level of these genes in leaves than in other tested tissues. These ferritin genes were differentially expressed in response to various abiotic stresses and hormones treatments. The expression of ferritin wasn't affected by Fe(III)-citrate treatment. Abscisic acid significantly enhanced the expression of all four ferritin genes, especially PpFer2, followed by N-benzylyminopurine, gibberellic acid, and indole-3-acetic acid. The expression peaks of PpFer1 and PpFer3 in leaves appeared at 6, 6, and 12 h, respectively, after pear plant was exposed to oxidative stress (5 mM H(2)O(2)), salt stress (200 mM NaCl), and heat stress (40°C). A significant increase in PpFer4 expression was detected at 6 h after salt stress or heat stress. The expression of ferritin genes was not altered by cold stress. These results suggested that ferritin genes might be functionally important in acclimation of pear to salt and oxidative stresses. Hormone treatments had no significant effect on expression of ferritin genes compared to abiotic stresses. This showed accumulation of ferritin genes could be operated by different transduction pathways under abiotic stresses and hormones treatments.


Subject(s)
Ferritins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Pyrus/drug effects , Pyrus/genetics , Stress, Physiological/genetics , Citrates/pharmacology , Cold Temperature , Fluorescent Dyes/metabolism , Genes, Plant/genetics , Hot Temperature , Iron/pharmacology , Organ Specificity/drug effects , Organ Specificity/genetics , Oxidative Stress/drug effects , Oxidative Stress/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sodium Chloride/pharmacology , Stress, Physiological/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...