Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 8): 127632, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37884241

ABSTRACT

Biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) has emerged as a promising biodegradable polymer with a great potential to compete with traditional petroleum-based plastics, however, the poor crystallization ability makes it challenge to transform into high-performance products via common melt-processing methods. Herein, we demonstrate that N,N'-dicyclohexyl-2,6-naphthalenedicarboxamide (TMB) can serve as an efficient nucleating agent to significantly enhance the crystallization and resulting storage stability of PHBHHx. The results indicate that PHBHHx with small amounts of TMB (0.3-0.5 wt%) can crystallize completely even under a rapid cooling rate of 100 °C/min and the isothermal crystallization time is greatly reduced. As a result, the crystallinity of the injection-molded PHBHHx products is increased from 24.5 % to 39.5 %, without secondary crystallization after being stored at room temperature for 6 h. The products exhibit superior dimensional stability and the post-shrinkage can be decreased to as low as 0.1 %. Our work offers a feasible method to develop high-performance PHBHHx materials with remarkably enhanced crystallization ability.


Subject(s)
Hydroxybutyrates , Polymers , 3-Hydroxybutyric Acid/chemistry , Crystallization , Hydroxybutyrates/chemistry , Caproates/chemistry
2.
Biomacromolecules ; 24(2): 797-806, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36642871

ABSTRACT

At-home tooth whitening solutions with good efficacy and biosafety are highly desirable to meet the ever-growing demand for aesthetic dentistry. As a promising alternative to the classic peroxide bleaching that may damage tooth enamel and gums, piezocatalysis has been recently proposed to realize non-destructive whitening by toothbrushing with piezoelectrical particles. However, traditional particles either pose potential threats to human health or exhibit low piezoresponse to weak mechanical stimuli in the toothbrushing. Here, biocompatible and biodegradable polylactide particles constructed from interlocking crystalline lamellae have been hierarchically designed as next-generation whitening materials with ultra-high piezocatalytic activity and biosafety. By simultaneously controlling the chain conformation within lamellae and the porosity of such unique lamellae network at the nano- and microscales, the particles possessing unprecedented piezoelectricity have been successfully prepared due to the markedly increased dipole alignment, mechanical deformability, and specific surface area. The piezoelectric output can reach as high as 18.8 V, nearly 50 times higher than that of common solid polylactide particles. Consequently, their piezocatalytic effect can be readily activated by a toothbrush to rapidly clean the teeth stained with black tea and coffee, without causing detectable enamel damage. Furthermore, these particles have no cytotoxicity. This work presents a paradigm for achieving high piezoelectric activity in polylactide, which enables its practical application in tooth whitening.


Subject(s)
Tooth Bleaching , Tooth Discoloration , Tooth , Humans , Containment of Biohazards , Hydrogen Peroxide
SELECTION OF CITATIONS
SEARCH DETAIL
...