Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Nanomaterials (Basel) ; 14(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998680

ABSTRACT

With the rapid growth of the economy, people are increasingly reliant on energy sources. However, in recent years, the energy crisis has gradually intensified. As a clean energy source, methane has garnered widespread attention for its development and utilization. This study employed both large-scale computational screening and machine learning to investigate the adsorption and diffusion properties of thousands of metal-organic frameworks (MOFs) in six gas binary mixtures of CH4 (H2/CH4, N2/CH4, O2/CH4, CO2/CH4, H2S/CH4, He/CH4) for methane purification. Firstly, a univariate analysis was conducted to discuss the relationships between the performance indicators of adsorbents and their characteristic descriptors. Subsequently, four machine learning methods were utilized to predict the diffusivity/selectivity of gas, with the light gradient boosting machine (LGBM) algorithm emerging as the optimal one, yielding R2 values of 0.954 for the diffusivity and 0.931 for the selectivity. Furthermore, the LGBM algorithm was combined with the SHapley Additive exPlanation (SHAP) technique to quantitatively analyze the relative importance of each MOF descriptor, revealing that the pore limiting diameter (PLD) was the most critical structural descriptor affecting molecular diffusivity. Finally, for each system of CH4 mixture, three high-performance MOFs were identified, and the commonalities among high-performance MOFs were analyzed, leading to the proposals of three design principles involving changes only to the metal centers, organic linkers, or topological structures. Thus, this work reveals microscopic insights into the separation mechanisms of CH4 from different binary mixtures in MOFs.

2.
iScience ; 27(6): 110042, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38883811

ABSTRACT

Chemical warfare agents (CWAs), epitomized by the notoriously used mustard gas (HD), represent a class of exceptionally toxic chemicals whose airborne removal is paramount for battlefield safety. This study integrates high-throughput computational screening (HTCS) with advanced machine learning (ML) techniques to investigate the efficacy of metal-organic frameworks (MOFs) in adsorbing and capturing trace amounts of HD present in the air. Our approach commenced with a comprehensive univariate analysis, scrutinizing the impact of six distinct descriptors on the adsorption efficiency of MOFs. This analysis elucidated a pronounced correlation between MOF density and the Henry coefficient in the effective capture of HD. Then, four ML algorithms were employed to train and predict the performance of MOFs. The Random Forest (RF) algorithm demonstrates strong model learning and good generalization, achieving the best prediction result of 98.3%. In a novel exploratory stride, we incorporated a 166-bit MACCS molecular fingerprinting (MF) to identify critical functional groups within adsorbents. From the top 100 MOFs analyzed, 22 optimal functional groups were identified. Leveraging these insights, we designed three innovative substructures, grounded in these key functional groups, to enhance HD adsorption efficiency. In this work, the combination of MF and ML could provide a new direction for efficient screening of MOFs for the capture of HD in the air. The outcomes of this study offer substantial potential to revolutionize the domain of CWA capture. This represents a significant stride toward developing practical solutions that enhance both environmental protection and battlefield security.

3.
Phys Med Biol ; 69(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38729205

ABSTRACT

Objective.Electron paramagnetic resonance (EPR) imaging is an advanced in vivo oxygen imaging modality. The main drawback of EPR imaging is the long scanning time. Sparse-view projections collection is an effective fast scanning pattern. However, the commonly-used filtered back projection (FBP) algorithm is not competent to accurately reconstruct images from sparse-view projections because of the severe streak artifacts. The aim of this work is to develop an advanced algorithm for sparse reconstruction of 3D EPR imaging.Methods.The optimization based algorithms including the total variation (TV) algorithm have proven to be effective in sparse reconstruction in EPR imaging. To further improve the reconstruction accuracy, we propose the directional TV (DTV) model and derive its Chambolle-Pock solving algorithm.Results.After the algorithm correctness validation on simulation data, we explore the sparse reconstruction capability of the DTV algorithm via a simulated six-sphere phantom and two real bottle phantoms filled with OX063 trityl solution and scanned by an EPR imager with a magnetic field strength of 250 G.Conclusion.Both the simulated and real data experiments show that the DTV algorithm is superior to the existing FBP and TV-type algorithms and a deep learning based method according to visual inspection and quantitative evaluations in sparse reconstruction of EPR imaging.Significance.These insights gained in this work may be used in the development of fast EPR imaging workflow of practical significance.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Phantoms, Imaging , Electron Spin Resonance Spectroscopy/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods
4.
Carbohydr Polym ; 332: 121872, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431388

ABSTRACT

Cotton is one of the oldest and most widely used natural fibers in the world. It enables a wide range of applications due to its excellent moisture absorption, thermal insulation, heat resistance, and durability. Benefiting from current developments in textile technology and materials science, people are constantly seeking more comfortable, more beautiful and more versatile cotton fabrics. As the second skin of body, clothing not only provides the basic needs of wear but also increases the protection of body against different environmental stimuli. In this article, a comprehensive review is proposed regarding research activities of systematically summarise the development and research of cotton fabric-based photocatalytic composites for the degradation of organic contaminants in the area of self-cleaning, degradation of gaseous contaminants, pathogenic bacteria or viruses, and chemical warfare agents. Specifically, we begin with a brief exposition of the background and significance of cotton fabric-based photocatalytic composites. Next, a systematical review on cotton fabric-based photocatalytic composites is provided according to their mechanisms and advanced applications. Finally, a simple summary and analysis concludes the current limitations and future directions in these composites for the degradation of organic contaminants.

5.
J Magn Reson ; 361: 107652, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457937

ABSTRACT

Precise radiation guided by oxygen images has demonstrated superiority over the traditional radiation methods. Electron paramagnetic resonance (EPR) imaging has proven to be the most advanced oxygen imaging modality. However, the main drawback of EPR imaging is the long scan time. For each projection, we usually need to collect the projection many times and then average them to achieve high signal-to-noise ratio (SNR). One approach to fast scan is to reduce the repeating time for each projection. While the projections would be noisy and thus the traditional commonly-use filtered backprojection (FBP) algorithm would not be capable of accurately reconstructing images. Optimization-based iterative algorithms may accurately reconstruct images from noisy projections for they may incorporate prior information into optimization models. Based on the total variation (TV) algorithms for EPR imaging, in this work, we propose a directional TV (DTV) algorithm to further improve the reconstruction accuracy. We construct the DTV constrained, data divergence minimization (DTVcDM) model, derive its Chambolle-Pock (CP) solving algorithm, validate the correctness of the whole algorithm, and perform evaluations via simulated and real data. The experimental results show that the DTV algorithm outperforms the existing TV and FBP algorithms in fast EPR imaging. Compared to the standard FBP algorithm, the proposed algorithm may achieve 10 times of acceleration.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Electron Spin Resonance Spectroscopy/methods , Phantoms, Imaging , Imaging, Three-Dimensional/methods , Oxygen , Image Processing, Computer-Assisted/methods
6.
J Colloid Interface Sci ; 662: 941-952, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38382377

ABSTRACT

Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal-organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.

7.
J Xray Sci Technol ; 32(2): 207-228, 2024.
Article in English | MEDLINE | ID: mdl-38306086

ABSTRACT

OBJECTIVE: CT image reconstruction from sparse-view projections is an important imaging configuration for low-dose CT, as it can reduce radiation dose. However, the CT images reconstructed from sparse-view projections by traditional analytic algorithms suffer from severe sparse artifacts. Therefore, it is of great value to develop advanced methods to suppress these artifacts. In this work, we aim to use a deep learning (DL)-based method to suppress sparse artifacts. METHODS: Inspired by the good performance of DenseNet and Transformer architecture in computer vision tasks, we propose a Dense U-shaped Transformer (D-U-Transformer) to suppress sparse artifacts. This architecture exploits the advantages of densely connected convolutions in capturing local context and Transformer in modelling long-range dependencies, and applies channel attention to fusion features. Moreover, we design a dual-domain multi-loss function with learned weights for the optimization of the model to further improve image quality. RESULTS: Experimental results of our proposed D-U-Transformer yield performance improvements on the well-known Mayo Clinic LDCT dataset over several representative DL-based models in terms of artifact suppression and image feature preservation. Extensive internal ablation experiments demonstrate the effectiveness of the components in the proposed model for sparse-view computed tomography (SVCT) reconstruction. SIGNIFICANCE: The proposed method can effectively suppress sparse artifacts and achieve high-precision SVCT reconstruction, thus promoting clinical CT scanning towards low-dose radiation and high-quality imaging. The findings of this work can be applied to denoising and artifact removal tasks in CT and other medical images.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Artifacts
8.
Nanomaterials (Basel) ; 14(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38334569

ABSTRACT

The shape and topology of pores have significant impacts on the gas storage properties of nanoporous materials. Metal-organic frameworks (MOFs) are ideal materials with which to tailor to the needs of specific applications, due to properties such as their tunable structure and high specific surface area. It is, therefore, particularly important to develop descriptors that accurately identify the topological features of MOF pores. In this work, a topological data analysis method was used to develop a topological descriptor, based on the pore topology, which was combined with the Extreme Gradient Boosting (XGBoost) algorithm to predict the adsorption performance of MOFs for methane/ethane/propane. The final results show that this descriptor can accurately predict the performance of MOFs, and the introduction of the topological descriptor also significantly improves the accuracy of the model, resulting in an increase of up to 17.55% in the R2 value of the model and a decrease of up to 46.1% in the RMSE, compared to commonly used models that are based on the structural descriptor. The results of this study contribute to a deeper understanding of the relationship between the performance and structure of MOFs and provide useful guidelines and strategies for the design of high-performance separation materials.

9.
Chem Commun (Camb) ; 60(17): 2397-2400, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323363

ABSTRACT

Herein, we report the synthesis of a two-dimensional metal-organic framework (MOF), assembled from octahedral metal-organic cages featuring phenanthroline-based carboxylate linkers and µ3-oxo-centered trinuclear Sc(III) inorganic building blocks. We study the performance of this MOF towards the capture of sulfur hexafluoride (SF6). On account of its structural features and porous nature, this MOF displays an SF6 uptake capacity of 0.92 mmol g-1 at 0.1 bar and an isosteric heat of adsorption of about 30.7 kJ mol-1 for SF6, illustrating its potential application for the selective capture of SF6 from N2. In addition, we study the adsorptive binding mechanism of SF6 and N2 inside this MOF via molecular simulations.

10.
J Xray Sci Technol ; 31(6): 1189-1205, 2023.
Article in English | MEDLINE | ID: mdl-37718835

ABSTRACT

BACKGROUND: An effective method for achieving low-dose CT is to keep the number of projection angles constant while reducing radiation dose at each angle. However, this leads to high-intensity noise in the reconstructed image, adversely affecting subsequent image processing, analysis, and diagnosis. OBJECTIVE: This paper proposes a novel Channel Graph Perception based U-shaped Transformer (CGP-Uformer) network, aiming to achieve high-performance denoising of low-dose CT images. METHODS: The network consists of convolutional feed-forward Transformer (ConvF-Transformer) blocks, a channel graph perception block (CGPB), and spatial cross-attention (SC-Attention) blocks. The ConvF-Transformer blocks enhance the ability of feature representation and information transmission through the CNN-based feed-forward network. The CGPB introduces Graph Convolutional Network (GCN) for Channel-to-Channel feature extraction, promoting the propagation of information across distinct channels and enabling inter-channel information interchange. The SC-Attention blocks reduce the semantic difference in feature fusion between the encoder and decoder by computing spatial cross-attention. RESULTS: By applying CGP-Uformer to process the 2016 NIH AAPM-Mayo LDCT challenge dataset, experiments show that the peak signal-to-noise ratio value is 35.56 and the structural similarity value is 0.9221. CONCLUSIONS: Compared to the other four representative denoising networks currently, this new network demonstrates superior denoising performance and better preservation of image details.


Subject(s)
Electric Power Supplies , Image Processing, Computer-Assisted , Signal-To-Noise Ratio , Perception , Tomography, X-Ray Computed , Algorithms
11.
Adv Sci (Weinh) ; 10(21): e2301461, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37166040

ABSTRACT

For gas separation and catalysis by metal-organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient boosting machine (LGBM), is trained to predict the molecular diffusivity and selectivity of 9 gases (Kr, Xe, CH4 , N2 , H2 S, O2 , CO2 , H2 , and He). For these 9 gases, LGBM displays high accuracy (average R2 = 0.962) and superior extrapolation for the diffusivity of C2 H6 . And this model calculation is five orders of magnitude faster than molecular dynamics (MD) simulations. Subsequently, using the trained LGBM model, an interactive desktop application is developed that can help researchers quickly and accurately calculate the diffusion of molecules in porous crystal materials. Finally, the authors find the difference in the molecular polarizability (ΔPol) is the key factor governing the diffusion selectivity by combining the trained LGBM model with the Shapley additive explanation (SHAP). By the calculation of interpretable ML, the optimal MOFs are selected for separating binary gas mixtures and CO2 methanation. This work provides a new direction for exploring the structure-property relationships of MOFs and realizing the rapid calculation of molecular diffusivity.

12.
Res Sq ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162853

ABSTRACT

Background and Objective: Optimization based image reconstruction algorithm is an advanced algorithm in medical imaging. However, the corresponding solving algorithm is challenging because the optimization model is usually large-scale and non-smooth. This work aims to devise a simple but universal solver for optimization models. Methods: The alternating direction method of multipliers (ADMM) algorithm is a simple and effective solver of the optimization models. However, there always exists a sub-problem that has not closed-form solution. One may use gradient descent algorithm to solve this sub-problem, but the step-size selection via line search is time-consuming. Or, one may use fast Fourier transform (FFT) to get a closed-form solution if the system matrix and the sparse transform matrix are both of special structure. In this work, we propose a simple but universal fully linearized ADMM (FL-ADMM) algorithm that avoids line search to determine step-size and applies to system matrix and sparse transform of any structures. Results: We derive the FL-ADMM algorithm instances for three total variation (TV) models in 2D computed tomography (CT). Further, we validate and evaluate one FL-ADMM algorithm and explore how the two important factors impact convergence rate. Also, we compare this algorithm with the Chambolle-Pock algorithm via real CT phantom reconstructions. These studies show that the FL-ADMM algorithm may accurately solve optimization models in image reconstruction. Conclusion: The FL-ADMM algorithm is a simple, effective, convergent and universal solver of optimization models in image reconstruction. Compared to the existing ADMM algorithms, the new algorithm does not need time-consuming step-size line-search or special demand to system matrix and sparse transform. It is a rapid prototyping tool for optimization based image reconstruction.

13.
J Magn Reson ; 350: 107432, 2023 May.
Article in English | MEDLINE | ID: mdl-37058955

ABSTRACT

OBJECTIVE: We investigate and develop optimization-based algorithms for accurate reconstruction of four-dimensional (4D)-spectral-spatial (SS) images directly from data collected over limited angular ranges (LARs) in continuous-wave (CW) electron paramagnetic resonance imaging (EPRI). METHODS: Basing on a discrete-to-discrete data model devised in CW EPRI employing the Zeeman-modulation (ZM) scheme for data acquisition, we first formulate the image reconstruction problem as a convex, constrained optimization program that includes a data fidelity term and also constraints on the individual directional total variations (DTVs) of the 4D-SS image. Subsequently, we develop a primal-dual-based DTV algorithm, simply referred to as the DTV algorithm, to solve the constrained optimization program for achieving image reconstruction from data collected in LAR scans in CW-ZM EPRI. RESULTS: We evaluate the DTV algorithm in simulated- and real-data studies for a variety of LAR scans of interest in CW-ZM EPRI, and visual and quantitative results of the studies reveal that 4D-SS images can be reconstructed directly from LAR data, which are visually and quantitatively comparable to those obtained from data acquired in the standard, full-angular-range (FAR) scan in CW-ZM EPRI. CONCLUSION: An optimization-based DTV algorithm is developed for accurately reconstructing 4D-SS images directly from LAR data in CW-ZM EPRI. Future work includes the development and application of the optimization-based DTV algorithm for reconstructions of 4D-SS images from FAR and LAR data acquired in CW EPRI employing schemes other than the ZM scheme. SIGNIFICANCE: The DTV algorithm developed may be exploited potentially for enabling and optimizing CW EPRI with minimized imaging time and artifacts by acquiring data in LAR scans.

14.
Med Phys ; 50(9): 5568-5584, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36934310

ABSTRACT

BACKGROUND: With the development of low-dose computed tomography (CT), incomplete data reconstruction has been widely concerned. The total variation (TV) minimization algorithm can accurately reconstruct images from sparse or noisy data. PURPOSE: However, the traditional TV algorithm ignores the direction of structures in images, leading to the loss of edge information and block artifacts when the object is not piecewise constant. Since the anisotropic information can facilitate preserving the edge and detail information in images, we aim to improve the TV algorithm in terms of reconstruction accuracy via this approach. METHODS: In this paper, we propose an adaptive-weighted high order total variation (awHOTV) algorithm. We construct the second order TV-norm using the second order gradient, adapt the anisotropic edge property between neighboring image pixels, adjust the local image-intensity gradient to keep edge information, and design the corresponding Chambolle-Pock (CP) solving algorithm. Implementing the proposed algorithm, comprehensive studies are conducted in the ideal projection data experiment where the Structural similarity (SSIM), Root Mean Square Error (RMSE), Contrast to noise ratio (CNR), and modulation transform function (MTF) curves are utilized to evaluate the quality of reconstructed images in statism, structure, spatial resolution, and contrast, respectively. In the noisy data experiment, we further use the noise power spectrum (NPS) curve to evaluate the reconstructed images and compare it with other three algorithms. RESULTS: We use the 2D slice in the XCAT phantom, 2D slice in TCIA Challenge data and FORBILD phantom as simulation phantoms and use real bird data for real verification. The results show that, compared with the traditional TV and FBP algorithms, the awHOTV has better performance in terms of RMSE, SSIM, and Pearson correlation coefficient (PCC) under the projected data with different sparsity. In addition, the awHOTV algorithm is robust against the noise of different intensities. CONCLUSIONS: The proposed awHOTV method can reconstruct the images with high accuracy under sparse or noisy data. The awHOTV solves the strip artifacts caused by sparse data in the FBP method. Compared with the TV method, the awHOTV can effectively suppress block artifacts and has good detail protection ability.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Artifacts , Computer Simulation , Image Processing, Computer-Assisted/methods
15.
ACS Appl Mater Interfaces ; 15(14): 18229-18235, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36996577

ABSTRACT

The fine-tuning of metal-organic framework (MOF) pore structures is of critical importance in developing energy-efficient xenon/krypton (Xe/Kr) separation techniques. Capitalizing on reticular chemistry, we constructed a robust Y-based MOF (NU-1801) that is isoreticular to NPF-500 with a shortened organic ligand and a larger metal radius while maintaining the 4,8-connected flu topology, giving rise to a narrowed pore structure for the efficient separation of a Xe/Kr mixture. At 298 K and 1 bar, NU-1801 possessed a moderate Xe uptake of 2.79 mmol/g but exhibited a high Xe/Kr selectivity of 8.2 and an exceptional Xe/Kr uptake ratio of about 400%. NU-1801 could efficiently separate a Xe/Kr mixture (20:80, v/v), as validated by breakthrough experiments, due to the outstanding discrimination in van der Waals interactions of Xe and Kr toward the framework confirmed by grand canonical Monte Carlo simulations. This work highlights the importance of reticular chemistry in designing structure-specific MOFs for gas separation.

16.
Anal Chim Acta ; 1244: 340558, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36737143

ABSTRACT

Determining various properties of molecules is a critical step in drug discovery. Recently, with the improvement of large heterogeneous datasets and the development of deep learning approaches, more and more scientists have turned their attention to neural network-based virtual preliminary screening to reduce the time and monetary cost of drug discovery. However, the poor interpretability of deep learning masks causality, so models' conclusions are often beyond the comprehension of human users, which reduces the credibility of the model and makes it difficult for chemists to further narrow the huge chemical space based on models' results. Thus, this study develops a novel framework consisting of Graph Neural Networks for feature extraction, Curriculum-Based Learning Strategies for optimization, and a Learning Binary Neural Tree (LBNT) for prediction, to improve the performance of neural networks and reveal their decision-making process to chemists. The framework encodes molecular graph data with graph neural networks (GNNs), then retrains the encoder with curriculum-based learning strategies to reduce uncertainty and improve accuracy, and finally uses LBNT as the predictor, which joint retrains with the encoder after independently training, for prediction and visualization. The framework is validated on the public datasets and compared to single GNNs with normal training strategies as well as GNN encoders with common machine learning predictors instead of the LBNT predictor. The result reveals that the proposed framework enhances the point prediction accuracy of the completely trained GNN and reduces its uncertainty through curriculum-based learning, and further improves the accuracy by combining LBNT. Besides, compared with common machine learning tools, the LBNT predictor generally has the best performance because of joint retraining with the GNN encoder. The decision-making process of LBNT is also better and easier to explain than that of other models.

17.
Magn Reson Imaging ; 97: 24-30, 2023 04.
Article in English | MEDLINE | ID: mdl-36493992

ABSTRACT

Electron paramagnetic resonance imaging (EPRI) is an advanced tumor oxygen concentration imaging method. Now, the bottleneck problem of EPRI is that the scanning time is too long. Sparse reconstruction is an effective and fast imaging method, which means reconstructing images from sparse-view projections. However, the EPRI images sparsely reconstructed by the classic filtered back projection (FBP) algorithm often contain severe streak artifacts, which affect subsequent image processing. In this work, we propose a feature pyramid attention-based, residual, dense, deep convolutional network (FRD-Net) to suppress the streak artifacts in the FBP-reconstructed images. This network combines residual connection, attention mechanism, dense connections and introduces perceptual loss. The EPRI image with streak artifacts is used as the input of the network and the output-label is the corresponding high-quality image densely reconstructed by the FBP algorithm. After training, the FRD-Net gets the capability of suppressing streak artifacts. The real data reconstruction experiments show that the FRD-Net can better improve the sparse reconstruction accuracy, compared with three existing representative deep networks.


Subject(s)
Deep Learning , Tomography, X-Ray Computed/methods , Electron Spin Resonance Spectroscopy/methods , Image Processing, Computer-Assisted/methods , Algorithms , Artifacts , Phantoms, Imaging
18.
Inorg Chem ; 61(50): 20200-20205, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36472479

ABSTRACT

Highly selective detection of formaldehyde utilizing supramolecules has promising applications in both environmental monitoring and biomonitoring areas. Herein we present a new class of imidazole-based, coordination-driven, self-assembled triangular macrocycles with specific recognition of formaldehyde. The visible fluorescence change to the naked eye from yellow to green-yellow occurs via an unusual reversible hydroxymethylation reaction of imidazole, whereas the corresponding imidazole ligands show no fluorescence change. This study provides a new method for efficient formaldehyde detection by utilizing imidazole-based coordination supramolecules.


Subject(s)
Formaldehyde , Imidazoles , Ligands
19.
J Magn Reson ; 344: 107307, 2022 11.
Article in English | MEDLINE | ID: mdl-36308904

ABSTRACT

Electron paramagnetic resonance (EPR) imaging is an advanced oxygen imaging modality for oxygen-image guided radiation. The iterative reconstruction algorithm is the research hot-point in image reconstruction for EPR imaging (EPRI) for this type of algorithm may incorporate image-prior information to construct advanced optimization model to achieve accurate reconstruction from sparse-view projections and/or noisy projections. However, the system matrix in the iterative algorithm needs complicated calculation and needs huge memory-space if it is stored in memory. In this work, we propose an iterative reconstruction algorithm without system matrix for EPRI to simplify the whole iterative reconstruction process. The function of the system matrix is to calculate the projections, whereas the function of the transpose of the system matrix is to perform backprojection. The existing projection and backprojection methods are all based on the configuration that the imaged-object remains stationary and the scanning device rotates. Here, we implement the projection and backprojection operations by fixing the scanning device and rotating the object. Thus, the core algorithm is only the commonly-used image-rotation algorithm, while the calculation and store of the system matrix are avoided. Based on the idea of image rotation, we design a specific iterative reconstruction algorithm for EPRI, total variation constrained data divergence minimization (TVcDM) algorithm without system matrix, and named it as image-rotation based TVcDM (R-TVcDM). Through a series of comparisons with the original TVcDM via real projection data, we find that the proposed algorithm may achieve similar reconstruction accuracy with the original one. But it avoids the complicated calculation and store of the system matrix. The insights gained in this work may be also applied to other imaging modalities, for example computed tomography and positron emission tomography.


Subject(s)
Algorithms , Oxygen , Electron Spin Resonance Spectroscopy/methods , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
20.
Membranes (Basel) ; 12(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36135849

ABSTRACT

Separating and capturing small amounts of CH4 or H2 from a mixture of gases, such as coal mine spent air, at a large scale remains a great challenge. We used large-scale computational screening and machine learning (ML) to simulate and explore the adsorption, diffusion, and permeation properties of 6013 computation-ready experimental metal-organic framework (MOF) adsorbents and MOF membranes (MOFMs) for capturing clean energy gases (CH4 and H2) in air. First, we modeled the relationships between the adsorption and the MOF membrane performance indicators and their characteristic descriptors. Among three ML algorithms, the random forest was found to have the best prediction efficiency for two systems (CH4/(O2 + N2) and H2/(O2 + N2)). Then, the algorithm was further applied to quantitatively analyze the relative importance values of seven MOF descriptors for five performance metrics of the two systems. Furthermore, the 20 best MOFs were also selected. Finally, the commonalities between the high-performance MOFs were analyzed, leading to three types of material design principles: tuned topology, alternative metal nodes, and organic linkers. As a result, this study provides microscopic insights into the capture of trace amounts of CH4 or H2 from air for applications involving coal mine spent air and hydrogen leakage.

SELECTION OF CITATIONS
SEARCH DETAIL
...