Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 291: 154125, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979434

ABSTRACT

Dwarfing is an important agronomic trait in fruit breeding. At present, dwarf cultivars or dwarfing rootstocks are used for high-density planting. Although some dwarf rootstocks have been used in the cultivation of pear (Pyrus bretschneideri Rehd), the breeding of dwarf pear rootstocks or cultivars is still sorely lacking. A previous study reported that PbXND1 results in a xylem-dwarf phenotype in pear trees. However, the regulatory mechanism upstream of PbXND1 is unclear. In this study, we identified PbBPC4 as an upstream regulatory factor of PbXND1 in yeast one-hybrid assays. In ß-glucuronidase staining and dual-luciferase assays, PbBPC4 enhanced the activity of the PbXND1 promoter. Tobacco plants overexpressing PbBPC4 showed decreased plant height because of a reduced xylem size. Similar changes in the xylem was observed in transgenic pear roots; those overexpressing PbBPC4 showed reduced xylem size, and those with silencing PbBPC4 expression showed increased xylem size, greater density of xylem vessels, and a larger proportion of the xylem out of the total cross-section area. Expression analyses showed that PbBPC4 increases the transcription of PbXND1, leading to reduced transcript levels of genes involved in the positive regulation of xylem development, ultimately resulting in a xylem-deficient dwarf phenotype. Taken together, our results reveal the mechanism by which PbBPC4 participates in the regulation of xylem development via directly altering the expression of PbXND1, thus leading to the dwarf phenotype in pear. These findings have reference value for the breeding of dwarf pear trees.


Subject(s)
Pyrus , Pyrus/genetics , Pyrus/metabolism , Phenotype , Fruit/metabolism , Promoter Regions, Genetic , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35955831

ABSTRACT

Dwarfing is an important agronomic characteristic in fruit breeding. However, due to the lack of dwarf cultivars and dwarf stocks, the dwarfing mechanism is poorly understood in pears. In this research, we discovered that the dwarf hybrid seedlings of pear (Pyrus bretschneideri Rehd.), 'Red Zaosu,' exhibited a xylem-deficient dwarf phenotype. The expression level of PbXND1, a suppressor of xylem development, was markedly enhanced in dwarf hybrid seedlings and its overexpression in pear results in a xylem-deficient dwarf phenotype. To further dissect the mechanism of PbXND1, PbTCP4 was isolated as a PbXND1 interaction protein through the pear yeast library. Root transformation experiments showed that PbTCP4 promotes root xylem development. Dual-luciferase assays showed that PbXND1 interactions with PbTCP4 suppressed the function of PbTCP4. PbXND1 expression resulted in a small amount of PbTCP4 sequestration in the cytoplasm and thereby prevented it from activating the gene expression, as assessed by bimolecular fluorescence complementation and co-location analyses. Additionally, PbXND1 affected the DNA-binding ability of PbTCP4, as determined by utilizing an electrophoretic mobility shift assay. These results suggest that PbXND1 regulates the function of PbTCP4 principally by affecting the DNA-binding ability of PbTCP4, whereas the cytoplasmic sequestration of PbTCP4 is only a minor factor. Taken together, this study provides new theoretical support for the extreme dwarfism associated with the absence of xylem caused by PbXND1, and it has significant reference value for the breeding of dwarf varieties and dwarf rootstocks of the pear.


Subject(s)
Pyrus , DNA/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Phenotype , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Pyrus/metabolism , Xylem/genetics , Xylem/metabolism
3.
Int J Mol Sci ; 22(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809693

ABSTRACT

The N-terminal of Myc-like basic helix-loop-helix transcription factors (bHLH TFs) contains an interaction domain, namely the MYB-interacting region (MIR), which interacts with the R2R3-MYB proteins to regulate genes involved in the anthocyanin biosynthetic pathway. However, the functions of MIR-domain bHLHs in this pathway are not fully understood. In this study, PbbHLH2 containing the MIR-domain was identified and its function investigated. The overexpression of PbbHLH2 in "Zaosu" pear peel increased the anthocyanin content and the expression levels of late biosynthetic genes. Bimolecular fluorescence complementation showed that PbbHLH2 interacted with R2R3-MYB TFs PbMYB9, 10, and 10b in onion epidermal cells and confirmed that MIR-domain plays important roles in the interaction between the MIR-domain bHLH and R2R3-MYB TFs. Moreover, PbbHLH2 bound and activated the dihydroflavonol reductase promoter in yeast one-hybrid (Y1H) and dual-luciferase assays. Taken together these results suggested that the MIR domain of PbbHLH2 regulated anthocyanin biosynthesis in pear fruit peel.


Subject(s)
Anthocyanins/biosynthesis , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biosynthetic Pathways , Fruit/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Pyrus/metabolism , Amino Acid Sequence , Fruit/genetics , Gene Expression Regulation, Plant , Onions/cytology , Phylogeny , Plant Epidermis/cytology , Plant Proteins/genetics , Promoter Regions, Genetic , Protein Binding , Protein Domains , Pyrus/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...