Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123699, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38043297

ABSTRACT

The Raman microspectroscopy technology has been successfully applied to evaluate the molecular composition of living cells for identifying cell types and states, but the rationale behind it was not well investigated. In this study, we acquired single-cell Raman spectra (SCRS) of three Klebsiella pneumoniae (K. pneumoniae) strains with different Carbapenem resistant mechanisms and analyzed them with machine learning algorithm. Two carbapenem resistant Klebsiella pneumoniae (CRKP) strains can be successfully distinguished from susceptible strain and CRKP with KPC or IMP carbapenemases can be classified with an overall accuracy achieving 100 %. Furthermore, we performed a correlation analysis between transcriptome and Raman spectra, and found that Raman shifts such as 752 and 1039 cm-1 highly correlated with drug resistance genes expression and could be regarded as Raman biomarkers for CRKP with different mechanisms. The findings of the study provide a theoretical basis for identifying the relationship between Raman spectra and transcriptome of bacteria, as well as a novel method for rapid identification of CRKP and their carbapenemases types.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Transcriptome , Klebsiella Infections/microbiology , Carbapenems/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Gene Expression Profiling , Microbial Sensitivity Tests
2.
Proc Natl Acad Sci U S A ; 120(12): e2217254120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36917671

ABSTRACT

The potentiation of antibiotics is a promising strategy for combatting antibiotic-resistant/tolerant bacteria. Herein, we report that a 5-min sublethal heat shock enhances the bactericidal actions of aminoglycoside antibiotics by six orders of magnitude against both exponential- and stationary-phase Escherichia coli. This combined treatment also effectively kills various E. coli persisters, E. coli clinical isolates, and numerous gram-negative but not gram-positive bacteria and enables aminoglycosides at 5% of minimum inhibitory concentrations to eradicate multidrug-resistant pathogens Acinetobacter baumannii and Klebsiella pneumoniae. Mechanistically, the potentiation is achieved comprehensively by heat shock-enhanced proton motive force that thus promotes the bacterial uptake of aminoglycosides, as well as by increasing irreversible protein aggregation and reactive oxygen species that further augment the downstream lethality of aminoglycosides. Consistently, protonophores, chemical chaperones, antioxidants, and anaerobic culturing abolish heat shock-enhanced aminoglycoside lethality. We also demonstrate as a proof of concept that infrared irradiation- or photothermal nanosphere-induced thermal treatments potentiate aminoglycoside killing of Pseudomonas aeruginosa in a mouse acute skin wound model. Our study advances the understanding of the mechanism of actions of aminoglycosides and demonstrates a high potential for thermal ablation in curing bacterial infections when combined with aminoglycosides.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Aminoglycosides/pharmacology , Aminoglycosides/chemistry , Reactive Oxygen Species/pharmacology , Protein Aggregates , Escherichia coli , Gram-Negative Bacteria , Bacteria , Heat-Shock Response , Microbial Sensitivity Tests
3.
Anal Chim Acta ; 1239: 340658, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628751

ABSTRACT

Invasive fungal infection serves as a great threat to human health. Discrimination between fungal and bacterial infections at the earliest stage is vital for effective clinic practice; however, traditional culture-dependent microscopic diagnosis of fungal infection usually requires several days, meanwhile, culture-independent immunological and molecular methods are limited by the detectable type of pathogens and the issues with high false-positive rates. In this study, we proposed a novel culture-independent phenotyping method based on single-cell Raman spectroscopy for the rapid discrimination between fungal and bacterial infections. Three Raman biomarkers, including cytochrome c, peptidoglycan, and nucleic acid, were identified through hierarchical clustering analysis of Raman spectra across 12 types of most common yeast and bacterial pathogens. Compared to those of bacterial pathogens, the single cells of yeast pathogens demonstrated significantly stronger Raman peaks for cytochrome c, but weaker signals for peptidoglycan and nucleic acid. A two-step protocol combining the three biomarkers was established and able to differentiate fungal infections from bacterial infections with an overall accuracy of 94.9%. Our approach was also used to detect ten raw urinary tract infection samples. Successful identification of fungi was achieved within half an hour after sample obtainment. We further demonstrated the accurate fungal species taxonomy achieved with Raman-assisted cell ejection. Our findings demonstrate that Raman-based fungal identification is a novel, facile, reliable, and with a breadth of coverage approach, that has a great potential to be adopted in routine clinical practice to reduce the turn-around time of invasive fungal disease (IFD) diagnostics.


Subject(s)
Bacterial Infections , Saccharomyces cerevisiae , Humans , Spectrum Analysis, Raman/methods , Cytochromes c , Peptidoglycan , Bacteria
4.
Front Bioeng Biotechnol ; 10: 894100, 2022.
Article in English | MEDLINE | ID: mdl-35757804

ABSTRACT

The diversity of bacteria and their ability to acquire drug resistance lead to many challenges in traditional antibacterial methods. Photothermal therapies that convert light energy into localized physical heat to kill target microorganisms do not induce resistance and provide an alternative for antibacterial treatment. However, many photothermal materials cannot specifically target bacteria, which can lead to thermal damage to normal tissues, thus seriously affecting their biological applications. Here, we designed and synthesized bacteria-affinitive photothermal carbon dots (BAPTCDs) targeting MurD ligase that catalyzes the synthesis of peptidoglycan (PG) in bacteria. BAPTCDs presented specific recognition ability and excellent photothermal properties. BAPTCDs can bind to bacteria very tightly due to their chiral structure and inhibit enzyme activity by competing with D-glutamic acid to bind to MurD ligases, thus inhibiting the synthesis of bacterial walls. It also improves the accuracy of bacteria treatment by laser irradiation. Through the synergy of biochemical and physical effects, the material offers outstanding antibacterial effects and potentially contributes to tackling the spread of antibiotic resistance and facilitation of antibiotic stewardship.

5.
Biosensors (Basel) ; 11(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34436088

ABSTRACT

Traditional in vitro anticancer drug sensitivity testing at the population level suffers from lengthy procedures and high false positive rates. To overcome these defects, we built a confocal Raman microscopy sensing system and proposed a single-cell approach via Raman-deuterium isotope probing (Raman-DIP) as a rapid and reliable in vitro drug efficacy evaluation method. Raman-DIP detected the incorporation of deuterium into the cell, which correlated with the metabolic activity of the cell. The human non-small cell lung cancer cell line HCC827 and human breast cancer cell line MCF-7 were tested against eight different anticancer drugs. The metabolic activity of cancer cells could be detected as early as 12 h, independent of cell growth. Incubation of cells in 30% heavy water (D2O) did not show any negative effect on cell viability. Compared with traditional methods, Raman-DIP could accurately determine the drug effect, meanwhile, it could reduce the testing period from 72-144 h to 48 h. Moreover, the heterogeneity of cells responding to anticancer drugs was observed at the single-cell level. This proof-of-concept study demonstrated the potential of Raman-DIP to be a reliable tool for cancer drug discovery and drug susceptibility testing.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Spectrum Analysis, Raman , Carcinoma, Non-Small-Cell Lung , Drug Screening Assays, Antitumor/methods , Humans , Lung Neoplasms , Microbial Sensitivity Tests , Mycobacterium tuberculosis
6.
Anal Chem ; 93(12): 5098-5106, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33728890

ABSTRACT

Human health is at great risk due to the spreading of antimicrobial resistance (AMR). The lengthy procedure of conventional antimicrobial susceptibility testing (AST) usually requires a few days. We developed a fast Raman-assisted antibiotic susceptibility test (FRAST), which detects single bacterial metabolic activity in the presence of antibiotics, using Raman single-cell spectroscopy. It was found that single-cell Raman spectra (SCRS) would show a clear and distinguishable Raman band at the "silent zone" (2000-2300 cm-1), due to the active incorporation of deuterium from heavy water (D2O) by antibiotic-resistant bacteria. This pilot study has compared the FRAST and the conventional AST for six clinical standard quality controls (four Gram-negative and two Gram-positive bacteria strains) in response to 38 antibiotics. In total, 3200 treatments have been carried out and approximately 64 000 SCRS have been acquired for FRAST analysis. The result showed an overall agreement of 88.0% between the FRAST and the conventional AST assay. The gram-staining classification based on the linear discriminant analysis (LDA) model of SCRS was developed, seamlessly coupling with the FRAST to further reduce the turnaround time. We applied the FRAST to real clinical analysis for nine urinary infectious samples and three sepsis samples. The results were consistent with MALDI-TOF identification and the conventional AST. Under the optimal conditions, the "sample to report" of the FRAST could be reduced to 3 h for urine samples and 21 h for sepsis samples. The FRAST provides fast and reliable susceptibility tests, which could speed up microbiological analysis for clinical practice and facilitate antibiotic stewardship.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Humans , Microbial Sensitivity Tests , Pilot Projects
7.
Colloids Surf B Biointerfaces ; 191: 110987, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32325360

ABSTRACT

Assessment of microbial viability plays a key role in human health protection. Optical imaging based on fluorescent dyes is a simple and convenient way to assess microbial viability. However, it is still a challenge to obtain stable, nontoxic and low-cost dyes. Herein, we prepared a nitrogen and phosphorus co-doped carbon nanodots (N, P-CDs) via a one-step solvothermal method. The prepared CDs possess plenty of functional groups and exhibit high stability, good biocompatibility, excellent photoluminescent and low toxicity. Especially, the properties of high quantum yield (89.9%) and highly negative surface charge (-41.9 mV) make the prepared N, P-CDs ideal materials for microbial differentiation. Compared with commercial dyes, our CDs are more stable, cost less, which can rapidly distinguish dead microorganisms from living ones with higher specificity.


Subject(s)
Bacteria/growth & development , Fluorescent Dyes/chemistry , Fungi/growth & development , Microbial Viability , Nanostructures/chemistry , Quantum Dots , Bacteria/classification , Bacteria/isolation & purification , Carbon/chemistry , Fungi/classification , Fungi/isolation & purification , HeLa Cells , Humans , Nitrogen/chemistry , Optical Imaging , Phosphorus/chemistry
8.
J Mater Chem B ; 8(5): 919-927, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31912848

ABSTRACT

Copper ions (Cu2+) and l-cysteine (l-Cys) in the human body always play critical roles in various physiological processes, while abnormal Cu2+ and l-Cys concentrations in the biological system lead to many diseases. In this manuscript, Si-doped carbon dots (Si-CDs) with near-infrared fluorescence were designed for the detection of Cu2+ and l-Cys through the fluorescence "on-off-on" mode. The carbon dots exhibited not only excellent optical merits including good stability against photobleaching and high chemical stability, but also superior biological compatibility. Interestingly, due to the abundant amino groups distributed on the surface of Si-CDs, they could bind to copper ions to form cupric amine complexes and then quench the fluorescence of Si-CDs due to an electron transfer process. In addition, upon the addition of l-Cys, the FL intensity of Si-CDs could be effectively recovered accompanied with complexation between Cu2+ and the functional groups in l-Cys, due to which Cu2+ was removed from the surface of Si-CDs. Notably, as far as we know, these are the first red-emitting carbon dots for copper ion and l-Cys assays in water samples and human plasma samples. Furthermore, this strategy was successfully applied to the determination of Cu2+ and l-Cys in living systems, demonstrating great practicability in biomedical applications.


Subject(s)
Carbon/chemistry , Copper/analysis , Cysteine/analysis , Optical Imaging , Quantum Dots/chemistry , Silicon/chemistry , A549 Cells , HeLa Cells , Humans , Materials Testing , Molecular Structure , Particle Size , Spectrometry, Fluorescence , Surface Properties
9.
RSC Adv ; 10(17): 10067-10075, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-35498619

ABSTRACT

In recent years, carbon dot (CD)-based fluorescent sensors for selective ions or small biomolecules have drawn great attention. In this work, highly fluorescent CDs (QY = 21%) were prepared from 2,3-diamino pyridine as the precursor through a facile solvothermal process. The CDs showed high stability and a green emission in aqueous, and the optimal emission wavelength of CDs is 508 nm under the excitation wavelength of 438 nm. Interestingly, a CDs-based nanoprobe was developed for a selective and sensitive fluorescence quenching response to NO2 - in water, and the quenching mechanism was investigated in the work. Besides, the recovery rates of NO2 - in the range of 98-103.5% were found to be acceptable, indicating that the proposed CDs could be act as potential candidates for determination of nitrite ions in real samples. Meanwhile, the nanoprobe was also successfully employed in a visualization biosensing platform for determination of NO2 - in living cells due to its eminent biocompatibility.

10.
Talanta ; 185: 1-6, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29759174

ABSTRACT

A new cyanide probe has been prepared by one-step synthesis and evaluated by UV-vis and fluorescent method. This probe is combined by a fluorene part and a hemicyanine group through a conjugated linker, which is found to show rapid response, high selectivity and sensitivity for cyanide anions with significant dual colorimetric and fluorescent signal changes in aqueous solution. An intramolecular charge transfer (ICT) effect plays a key role in the CN- sensing properties, and the details of this mechanism are further supported by DFT and TD-DFT calculations. The theoretical study shows that the introduction of CN- twists the original plane structure and blocks the ICT process in the whole molecule, which brings about the absorption blue-shift and the fluorescence quenching.

11.
J Mater Chem B ; 6(21): 3549-3554, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-32254450

ABSTRACT

Carbon nanodots (CDs) are novel forms of zero-dimensional carbonaceous nanomaterials, which have attracted the attention of researchers. Long wavelength emission decreases the interference of auto-fluorescence of tissue and can also penetrate more deeply. However, it is still a challenge to develop red emissive CDs. In this work, nitrogen, sulfur co-doped CDs are synthesized with red light emission through one-step solvothermal treatment. The as-synthesized CDs exhibit excellent properties such as high chemical stability, good biocompatibility, excellent photoluminescence properties, good water solubility, and low toxicity, and also show high sensitivity and selectivity towards Fe3+ sensing. The detection limit is as low as 17.3 nM. In addition, the CDs are successfully utilized for monitoring Fe3+ in living cells, which demonstrates their promising applicability in bioimaging. Furthermore, a test paper based on the CQDs has been prepared. This developed nanosensor can detect Fe3+ visually and sensitively without any further steps which will make a great contribution to the development of ion sensors.

12.
J Phys Chem A ; 122(1): 217-223, 2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29232518

ABSTRACT

The development of probes for rapid and selective detection of peroxynitrite in vivo is of great importance in biological science. We investigate different photoinduced electron transfer (PIET) processes of two generations of peroxynitrite probes. Each has fluorescein and phenol moieties; one is conjugated by an ether linkage while the other is conjugated via an amine linkage. Using theoretical calculations, we demonstrated that the PIET in the probe with an ether linkage occurs from the benzoic acid to the xanthene moiety. In contrast, the PIET in the probe with an amine linkage occurs from the phenol moiety to the fluorescein. This suggests that better sensitivity can be accomplished in probes with an amine linkage than with an ether linkage. Following this model, we designed two novel peroxynitrite probes and simulated their detection capabilities in the near-infrared region.

SELECTION OF CITATIONS
SEARCH DETAIL
...