Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 264: 124752, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37276675

ABSTRACT

Phytocannabinoids and their synthetic analogs (natural and synthetic cannabinoids) are illicit drugs that are widely abused worldwide. Wastewater-based epidemiology (WBE) is an objective approach for the estimation of population-level exposure to a wide range of substances, especially drugs of abuse. However, the concentrations of cannabinoids in wastewater are extremely low (frequently at the levels of nanograms per liter), and the existing pretreatment procedures for wastewater have the disadvantages of time-consumption or low extraction recoveries. This study aimed to propose a novel poly (methacrylic acid-co-ethylene glycol dimethacrylate)-functionalized polydopamine-coated Fe3O4 nanoparticle (Fe3O4@PDA@poly (MAA-co-EGDMA)) as an adsorbent, and provide a highly sensitive quantitative analytical technique for the detection of five synthetic cannabinoids (SCs: 5 F-EDMB-PINACA, FUB-APINACA, MDMB-4en-PINACA, MDMB-FUBINACA, and PB-22) and one cannabis-related human metabolite (THC-COOH) in wastewater. The magnetic adsorbents were fully characterized by transmission electron microscopy (TEM), infrared spectroscopy (IR), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). Subsequently, an MSPE-UHPLC-MS/MS method was developed and validated for the determination of six trace analytes in wastewater. The validation results showed that the method has limits of quantification as low as 0.1-1.0 ng/L. Additionally, the recoveries ranged from 62.81 to 124.02%, and the relative standard deviations (RSDs) of intraday and interday precision were less than 15%. This MSPE-UHPLC-MS/MS method was successfully applied to real wastewater samples, and the whole analytical process of one sample from pretreatment to the obtained quantitative results was completed in less than 30 min. Thus, the proposed method based on Fe3O4@PDA@poly (MAA-co-EGDMA) is a convenient, rapid, sensitive and reliable method for the determination of trace psychoactive drugs in wastewater.


Subject(s)
Cannabinoids , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Wastewater , Solid Phase Extraction/methods , Magnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...