Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 6): 126794, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37699463

ABSTRACT

Targeted separation of active phytochemicals is urgently needed in the natural medicine field. In this paper, due to the natural porosity and high biocompatibility of cellulose, a nanocellulose membrane combined with surface molecular imprinting was successfully prepared; the efficient nanocellulose-based molecular imprinted membrane (NC-MIM) provided good adsorption for the targeted separation of phytochemicals such as 10-deacetylbaccatin III (10-DAB), an essential intermediate in the synthesis of the anticancer drug paclitaxel. Through a series of characterization and adsorption experiments, the adsorption mechanism of NC-MIM was determined. At pH 8.0 and temperatures of 20 °C-40 °C, the maximum capacity of NC-MIM for adsorption of 10-DAB reached 66.90 mg g - 1, and the content of 10-DAB was dramatically increased 17.5-fold after adsorption. The specific adsorption results showed that NC-MIM had excellent capacity for targeted separation of 10-DAB from among taxane structural analogues. Even after ten cycles, NC-MIM demonstrated a remarkable adsorption capacity of 86.43%, thereby indicating exceptional selectivity and stability. The successful implementation of NC-MIM for green, safe, and efficient enrichment of phytochemicals from plants provides a promising new approach and valuable insights into its practical application.


Subject(s)
Molecular Imprinting , Polymers , Polymers/chemistry , Molecular Imprinting/methods , Taxoids , Adsorption
2.
J Chromatogr A ; 1706: 464225, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37541056

ABSTRACT

In this article, thermosensitive molecularly imprinted polymer and composite aerogel were combined for the first time to create an intelligent temperature-responsive aerogel reactor to effectively enrich ursolic acid (UA). Because aerogel carrier had a higher specific surface area and higher porosity compared to other carriers, the ursolic acid molecularly imprinted intelligent temperature responsive aerogel reactor (ITR&AR(G570)&UA-MIP) demonstrated a higher adsorption capacity for UA. More notably, ITR&AR(G570)&UA-MIP have the extraordinary capacity to spontaneously adsorb-desorb target molecule UA by regulating the reaction temperature. The ratio of the target molecule UA to the functional monomer and crosslinker in the grafting process and external influences had a major impact on how ITR&AR(G570)&UA-MIP were prepared overall. When the molar ratio of UA to 4-VP was 1:8, the weight ratio between ITR&AR(G570)&UA-MIP and EGDMA/DVB was 1:2:10, the reaction temperature was 60 °C, and the ambient pH = 6, the material showed the best adsorption capacity, reaching a peak of about 70 mg g-1. After researching the appropriate synthesis conditions, ITR&AR(G570)&UA-MIP were applied to lingonberry (Vaccinium Vitis-Idaea L.) berry extracts in this work. The outcomes show that this technique provides a new, intelligent, temperature-controlled adsorption material for the solid-phase extraction of triterpenoid acids in natural products, with good specific adsorption performance for the target molecule UA.


Subject(s)
Cellulose , Molecular Imprinting , Polymers/chemistry , Molecular Imprinting/methods , Temperature , Adsorption , Solid Phase Extraction/methods , Ursolic Acid
3.
J Chromatogr A ; 1655: 462487, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34487882

ABSTRACT

In this article, we successfully prepared three-dimensional cellulose microspheres modified by molecularly imprinted polymer for paclitaxel recognition and separation (3D-CM &PTX&MIPs). The material was characterized by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TG) and diffraction of X-rays (XRD). Under the optimized adsorption conditions, the maximum adsorption capacity reached 65.7 mg/g. And after 5 runs of reuse, (3D-CM&PTX&MIPs) still maintained a reusability rate of 90%. Besides, (3D-CM&PTX&MIPs) showed excellent selectivity for target PTX. Finally, (3D-CM&PTX&MIPs) was used for PTX recognition and separation in the extracts of yew leaves. This research laid a good foundation and scientific basis for the efficient, environmentally friendly, and rapid enrichment of metabolites in plants using bio-based molecularly imprinted polymers.


Subject(s)
Molecular Imprinting , Adsorption , Cellulose , Microspheres , Paclitaxel , Polymers
4.
Int J Biol Macromol ; 181: 1231-1242, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34022304

ABSTRACT

A microcrystalline cellulose-based temperature sensitivity paclitaxel molecular imprinted hydrogel (MCC-TSMIHs-PTX) was successfully prepared by temperature-sensitive monomer N-isopropylacrylamide, functional monomer 4-vinylpyridine, cross-linking agent N, N'-methylenebisacrylamide and microcrystalline cellulose. They showed imprinting effective responses to the temperature changes. The results of adsorption kinetics, adsorption equilibrium, thermodynamics, selectivity and reusability showed the successful formation of a grafting thermosensitivity hydrogel with higher adsorption capacity and specific recognition. When the temperature reached 308 K, imprinting effect of hydrogel cavities would be most effective and conducive to capture template molecules. When the temperature reached 288 K, the lowest imprinting effect would facilitate the desorption of PTX. Finally, the MCC-TSMIHs-PTX was applied to enrich the paclitaxel in Taxus × media extracts samples, the relative contents of PTX in the samples were increased greatly from 7.23% to 78.32%, indicating the MCC-TSMIHs-PTX was a stable adsorption capacity for efficient separation and enrichment of PTX in Taxus × media extracts.


Subject(s)
Cellulose/chemistry , Hydrogels/chemistry , Molecular Imprinting , Paclitaxel/pharmacology , Acrylamides/chemistry , Adsorption , Humans , Kinetics , Paclitaxel/chemistry , Polymers/chemistry , Pyridines/chemistry , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...