Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619986

ABSTRACT

BACKGROUND: Sea buckthorn has the functions of antioxidation, antitumor, anti-inflammation and regulating energy metabolism. In order to investigate the effects of sea buckthorn powder and sea buckthorn flavonoids on the antioxidant properties, immune function and muscle fatty acid composition of common carp, an oral feeding experiment was carried out. RESULTS: The administration of glucose significantly reduced the levels of glutathione and the activity of total antioxidant capacity enzyme in serum and hepatopancreas, while concurrently upregulating the level of malondialdehyde (MDA)(P < 0.05). Conversely, oral intake of sea buckthorn powder and flavonoids increased antioxidant enzyme activity and decreased MDA levels. In terms of antioxidant molecular indicators, sea buckthorn powder and sea buckthorn flavonoids significantly increased the mRNA levels of nuclear factor NF-E2-related factor (nrf2) in the hepatopancreas and muscle. Meanwhile, mRNA expression levels of downstream antioxidant-related genes (gr, cat, gpx, and sod) regulated by Nrf2 were also upregulated. In the immune aspects, the mRNA expression levels of proinflammatory cytokines, such as interleukin-6 (il-6), interleukin-1ß (il-1ß) and nuclear factor-κB (nf-κb), were reduced but the expressions of anti-inflammatory cytokines, such as growth factor-ß (tgf-ß) and interleukin-10 (il-10), were enhanced in the head kidney and spleen tissues after oral administration with sea buckthorn. In terms of muscle fatty acid composition, the ratio of n-3 polyunsaturated fatty acid (PUFA)/n-6 PUFA was notably higher after administering sea buckthorn flavonoids than that of the glucose group (P < 0.05). CONCLUSION: This study demonstrated that oral administration of sea buckthorn powder and sea buckthorn flavonoids significantly enhanced the antioxidant capacity and immune response and improved the muscle fatty acid compositions in common carp, and also mitigated the adverse effects of glucose treatment to a certain extent. © 2024 Society of Chemical Industry.

2.
Biochem Biophys Res Commun ; 708: 149810, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38531222

ABSTRACT

At present, the physiological roles of various hormones in fish glucose metabolism have been elucidated. Spexin, a 14-amino acids polypeptide, is highly conserved in many species and has functions such as reducing body weight and improving insulin resistance. In this paper, the open reading frame (ORF) of spx21 in grass carp (Ctenopharyngodon idella) was cloned, and the tissue distribution of spx1 and spx2, their direct and indirect regulatory effects on glucose metabolism of grass carp were investigated. The ORF of spx2 gene in grass carp was 279 bp in length. Moreover, spx1 was highly expressed in the adipose tissue, while spx2 was highly expressed in the brain. In vitro, SPX1 and SPX2 showed opposite effects on the glycolytic pathway in the primary hepatocytes. In vivo, intraperitoneal injection of SPX1 and SPX2 significantly reduced serum glucose levels and increased hepatopancreas glycogen contents. Meanwhile, SPX1 and SPX2 promoted the expression of key genes of glycolysis (pk) and glycogen synthesis (gys) in the hepatopancreas at 3 h post injection. As for indirect effects, 1000 nM SPX1 and SPX2 significantly increased insulin-mediated liver type phosphofructokinase (pfkla) mRNA expression and enhanced the inhibitory effects of insulin on glucose-6-phosphatase (g6pase), phosphoenolpyruvate carboxykinase (pepck), glycogen phosphorylase L (pygl) mRNA expression. Our results show that SPX1 and SPX2 have similar indirect effects on the regulation of glucose metabolism that enhance insulin activity, but they exhibit opposite roles in terms of direct effects.


Subject(s)
Carps , Glucose , Animals , Glucose/metabolism , Carps/metabolism , Insulin , RNA, Messenger/genetics , Glycogen , Fish Proteins/genetics , Fish Proteins/metabolism
3.
Front Microbiol ; 15: 1301292, 2024.
Article in English | MEDLINE | ID: mdl-38525073

ABSTRACT

Recently, it has been discovered that certain dairy buffaloes can produce higher milk yield and milk fat yield under the same feeding management conditions, which is a potential new trait. It is unknown to what extent, the rumen microbiome and its metabolites, as well as the host metabolism, contribute to milk yield and milk fat yield. Therefore, we will analyze the rumen microbiome and host-level potential regulatory mechanisms on milk yield and milk fat yield through rumen metagenomics, rumen metabolomics, and serum metabolomics experiments. Microbial metagenomics analysis revealed a significantly higher abundance of several species in the rumen of high-yield dairy buffaloes, which mainly belonged to genera, such as Prevotella, Butyrivibrio, Barnesiella, Lachnospiraceae, Ruminococcus, and Bacteroides. These species contribute to the degradation of diets and improve functions related to fatty acid biosynthesis and lipid metabolism. Furthermore, the rumen of high-yield dairy buffaloes exhibited a lower abundance of methanogenic bacteria and functions, which may produce less methane. Rumen metabolome analysis showed that high-yield dairy buffaloes had significantly higher concentrations of metabolites, including lipids, carbohydrates, and organic acids, as well as volatile fatty acids (VFAs), such as acetic acid and butyric acid. Meanwhile, several Prevotella, Butyrivibrio, Barnesiella, and Bacteroides species were significantly positively correlated with these metabolites. Serum metabolome analysis showed that high-yield dairy buffaloes had significantly higher concentrations of metabolites, mainly lipids and organic acids. Meanwhile, several Prevotella, Bacteroides, Barnesiella, Ruminococcus, and Butyrivibrio species were significantly positively correlated with these metabolites. The combined analysis showed that several species were present, including Prevotella.sp.CAG1031, Prevotella.sp.HUN102, Prevotella.sp.KHD1, Prevotella.phocaeensis, Butyrivibrio.sp.AE3009, Barnesiella.sp.An22, Bacteroides.sp.CAG927, and Bacteroidales.bacterium.52-46, which may play a crucial role in rumen and host lipid metabolism, contributing to milk yield and milk fat yield. The "omics-explainability" analysis revealed that the rumen microbial composition, functions, metabolites, and serum metabolites contributed 34.04, 47.13, 39.09, and 50.14%, respectively, to milk yield and milk fat yield. These findings demonstrate how the rumen microbiota and host jointly affect milk production traits in dairy buffaloes. This information is essential for developing targeted feeding management strategies to improve the quality and yield of buffalo milk.

4.
Food Chem ; 445: 138765, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38367562

ABSTRACT

This study aimed to reveal the effects and regulatory mechanism of dietary NDF on the performance of pigs by multi-omics analysis. Results showed that 16 % dietary NDF significantly improved meat quality, increased flavor amino acid content, and reduced backfat thickness and the feed-to-gain ratio. 16S rDNA sequencing showed that 16 % NDF significantly increased the abundance of Akkermansia, Lachnoclostridium, and Ruminococcus. Transcript analysis showed that genes related to muscle development and lipid metabolism were significantly modified. Metabonomic analysis showed that 16 % NDF significantly increased amino and fatty acid related metabolites. Correlation analysis suggested that 16 % NDF treatment may alter the gut microbiota and metabolites, regulate the expression of genes related to lipid and amino metabolism, and ultimately affect the flavor and performance of pigs. This study provides a novel understanding about the effect and regulatory mechanism of NDF supplements on the finishing pigs and a relevant reference for the improvement of diet formulation.


Subject(s)
Amino Acids , Detergents , Swine/genetics , Animals , Amino Acids/metabolism , Multiomics , Body Composition , Dietary Supplements , Diet/veterinary , Meat/analysis , Animal Feed/analysis
5.
J Fish Biol ; 104(5): 1483-1492, 2024 May.
Article in English | MEDLINE | ID: mdl-38372009

ABSTRACT

Isthmin-1 (Ism1) plays roles in glucose uptake in mammals as an adipokine. To investigate its role in the glucose metabolism of common carp (Cyprinus carpio. L), the Ism1 sequence was cloned, and its expression and distribution in tissues were detected. In addition, we prepared and purified the recombinant Ism1 protein using the E. coli expression system and assessed changes in the expression of key genes related to glucose metabolism through both in vivo injection experiments and primary hepatocyte experiments in vitro. The results revealed that the open reading frame of Ism1 was 1377 bp long, encoding 458 amino acids. Similarity analysis indicated that Ism1 exhibited a close evolutionary relationship with goldfish (Carassius auratus), sharing 98.35% amino acid similarity. Ism1 was expressed in all tissues of common carp, with the highest level observed in the heart, followed by the gill, head kidney, and hepatopancreas. Distinct patterns of Ism1 expression were identified during the oral glucose tolerance test and long-term high-carbohydrate and high-fat diet feeding experiments. In vivo studies demonstrated that the serum glucose concentration was reduced on treatment with Ism1, accompanied by a significant upregulation of mRNA levels for gk, hk, and pfk genes in hepatopancreas; conversely pepck and g6pase mRNA levels were significantly downregulated in the hepatopancreas under these conditions as well. Furthermore, our primary hepatocyte experiment confirmed that Ism1 could inhibit pepck and g6pase mRNA expression, while promoting gk, hk, and pfk mRNA expression levels. In conclusion, Ism1, in common carp, could participate in the glucose metabolism, which provides essential information for future studies on the function of Ism1.


Subject(s)
Carps , Fish Proteins , Glucose , Animals , Carps/genetics , Carps/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Glucose/metabolism , Hepatocytes/metabolism , Phylogeny , Amino Acid Sequence , Blood Glucose
6.
Fish Shellfish Immunol ; 144: 109289, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104699

ABSTRACT

High-carbohydrate (HC) diets may lead to the deterioration of the antioxidant and immune properties of Yellow River carp and the healthy development of the industry. Studies in mammals have found that sea buckthorn flavonoids (SF) improve antioxidant and immune performance. Therefore, this study comprehensively evaluated the effects of SF on Yellow River carp using in vitro and feeding trials with an HC diet. Control (C, 27.23 %), high-carbohydrate (HC, 42.99 %), and HC + SF (0.1 %, 0.2 %, and 0.4 %) groups were studied in a 10-week aquaculture experiment. The main findings were as follows: (1) SF scavenged O2·-, ·OH, and DPPH free radicals in vitro, which gradually increased with the SF concentration. (2) The antioxidant and immune performance of Yellow River carp was enhanced by dietary supplementation with SF, which involved the regulation of activities of antioxidant and immune enzymes, as well as their changes at the transcription and protein levels. In terms of antioxidant properties, compared to the HC group, HC + SF significantly decreased the activities of glutamic-oxaloacetic transaminase and glutamic-pyruvic transaminase and the contents of H2O2 and malondialdehyde in the serum and hepatopancreas. The activities of glutathione, glutathione-Px, superoxide dismutase, catalase, and total antioxidant activity in the HC-diet group. In contrast, the addition of SF increased antioxidant enzyme activity. In the hepatopancreas and muscles, SF regulated and activated Nrf2-Keap1, a key signaling pathway for oxidative stress. SF significantly increased the mRNA expression levels of downstream genes (gr, ho-1, cat, and sod) regulated by nrf2. In terms of immune performance, 0.4 % SF markedly increased the activity of immune-related enzymes. SF inhibited the gene expression of pro-inflammatory factors induced by the HC diet and promoted the gene expression of anti-inflammatory factors. In addition, the resistance of Yellow River carp to Aeromonas hydrophila was enhanced by SF. In summary, SF supplementation can reduce oxidative stress and inflammatory harm caused by the HC diet and improve the antioxidant and immune performance of Yellow River carp to varying degrees.


Subject(s)
Carps , Hippophae , Animals , Antioxidants/metabolism , Carps/metabolism , Dietary Supplements , Hippophae/metabolism , Diet/veterinary , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Hydrogen Peroxide/metabolism , Glutathione/metabolism , Carbohydrates , Animal Feed/analysis , Mammals/metabolism
7.
Genes (Basel) ; 14(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003015

ABSTRACT

During triacylglycerol synthesis, the acylglycerol-3-phosphate acyltransferase (AGPAT) family catalyzes the conversion of lysophosphatidic acid to phosphatidic acid and the acylation of sn-2 fatty acids. However, the catalytic activity of different AGPAT members is different. Therefore, this study aimed to investigate the mechanism through which different AGPATs affect the efficiency of TAG synthesis and fatty acid composition. The conservation of amino acid sequences and protein domains of the AGPAT family was analyzed, and the functions of AGPAT1, AGPAT3, and AGPAT4 genes in buffalo mammary epithelial cells (BMECs) were studied using RNA interference and gene overexpression. Prediction of the protein tertiary structure of the AGPAT family demonstrated that four conservative motifs (motif1, motif2, motif3, and motif6) formed a hydrophobic pocket in AGPAT proteins, except AGPAT6. According to cytological studies, AGPAT1, AGPAT3, and AGPAT4 were found to promote the synthesis and fatty acid compositions of triacylglycerol, especially UFA compositions of triacylglycerol, by regulating ACSL1, FASN, GPAM, DGAT2, and PPARG gene expression. This study provides new insights into the role of different AGPAT gene family members involved in TAG synthesis, and a reference for improving the fatty acid composition of milk.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Buffaloes , Animals , Buffaloes/genetics , Buffaloes/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Milk/metabolism , Fatty Acids/genetics , Triglycerides
8.
Fish Shellfish Immunol ; 139: 108859, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37277052

ABSTRACT

The Yellow River carp (Cyprinus carpio haematopterus) is a vital economically farmed fish of the Cyprinidae family. With the development of intensive aquaculture, carp production has increased dramatically, leading to the frequent occurrence of various diseases. Cell lines are considered the most cost-effective resource for in vitro studies and are widely used for physiological and pathological studies because of accessibility and convenience. This research established a novel immortal cell line CCM (Yellow River carp muscle cells) derived from the carp muscle. CCM has been passed over 71 generations for 1 year. The morphology of CCM and the adhesion and extension processes were captured by light and electron microscopy. CCM were passaged every 3 days with 20% FBS DMEM/F12 at 1:3. The optimum conditions for CCM growth were 28 °C and 20% FBS concentration. DNA sequencing of 16S rRNA and COI showed that CCM was derived from carp. CCM positively reacts to anti-PAX7 and anti-MyoD antibodies of carp. Analysis of chromosomes revealed that the chromosomal pattern number of CCM was 100. Transfection experiment demonstrated that CCM might be utilized to express foreign genes. Furthermore, cytotoxicity testing showed that CCM was susceptible to Aeromonas hydrophila, Aeromonas salmonicida, Aeromonas veronii, and Staphylococcus Aureus. The organophosphate pesticides (chlorpyrifos and glyphosate) or heavy metals (Hg, Cd, and Cu) exhibited dose-dependent cytotoxicity against CCM. After LPS treatment, the MyD88-IRAKs-NFκB pathway stimulates inflammatory-related factor il1ß, il8, il10, and nfκb expression. LPS did not seem to cause oxidative stress in CCM, and the expression of cat and sod was not affected. Poly (I:C) through TLR3-TRIF-MyD88-TRAF6-NFκB and TRIF-TRAF3-TBK1-IRF3 activated the transcription of related factors, increased expression of anti-viral protein, but no changes in apoptosis-related genes. To our knowledge, this is the first muscle cell line in Yellow River carp and the first study on the immune response signal pathways of Yellow River carp based on the muscle cell line. CCM cell line provides a more rapid and efficient experimental material for fish immunology research, and this study preliminarily elucidated its immune response strategy to LPS and poly (I:C).


Subject(s)
Carps , Fish Diseases , Animals , Carps/genetics , RNA, Ribosomal, 16S , Lipopolysaccharides/pharmacology , Myeloid Differentiation Factor 88 , Poly I-C , Muscles , Muscle Cells , Cell Line , Adaptor Proteins, Vesicular Transport
9.
Aquac Nutr ; 2023: 9953927, 2023.
Article in English | MEDLINE | ID: mdl-37266416

ABSTRACT

This study sought to examine the role of bile acids in the regulation of glucose and lipid metabolism, intestinal flora, and growth in high-fat diet-fed common carp (Cyprinus carpio L.). Fish (6.34 ± 0.07 g) were fed for 56 days with three different diets, the control diet (CO, 5.4% lipid), high-fat diet (HF, 11% lipid), and high-fat diet with 60 mg/kg bile acids (BAs, 11% lipid). The results showed that high-fat diets resulted in poor growth performance and increased triglyceride (TG) in serum and the liver. The addition of bile acids significantly alleviated the adverse effects of a high-fat diet. The mRNA expression results indicated that bile acids may improve lipid metabolism through the enhancement of the peroxisome proliferator-activated receptor (PPARa). The expression of gluconeogenesis-related phosphoenolpyruvate carboxykinase (PEPCK) mRNA was inhibited, while fibroblast growth factor 19 (FGF19) was significantly higher. Bile acids reshaped the intestinal microflora community, with the level of Bacteroidetes increasing. The correlation analysis indicated that Patescibacteria, Dependentiae, Myxococcota, and Planctomycetota in the gut are associated with genes involved in glucose and lipid metabolism. These results indicated that bile acids could ameliorate the negative effects of high-fat diets on common carp.

10.
Aquac Nutr ; 2023: 9555855, 2023.
Article in English | MEDLINE | ID: mdl-37034827

ABSTRACT

A 56-day feeding trial was conducted to investigate the effects of genistein on growth, lipid metabolism, antioxidant capacity, and immunity of common carp fed with high-carbohydrate or high-fat diets. Five diets were used to feed fish: control diet (5% fat; CO), high-fat diet (11% fat; HF), high-carbohydrate diet (45% carbohydrate; HC), and HF or HC diet with 500 mg/kg genistein (FG or CG). Results showed that final body weight (FW) and specific growth rate (SGR) were significantly reduced, but the supplementation with genistein resulted in higher values of FW and SGR than the HF or HC group. Both high carbohydrate and high fat belong to high-energy diets, which may promote lipid deposition. Genistein obviously decreased liver triglyceride (TG) content and alleviated hepatic fat vacuolation in the HF and HC groups. The expression of lipid metabolism genes (cpt-1 and atgl) was markedly higher in the FG group than in the HF group. The lipid synthesis-related genes (fas, acc, and pparγ) were elevated in high-energy diets but recovered to the control level or reduced after genistein treatments. With respect to fatty acid transporter genes, fatp increased in the FG group, and cd36 increased in the CG group. Furthermore, the antioxidant and immune indexes, such as total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), acid phosphatase (ACP), and lysozyme (LZM) activities, were decreased, while malonate aldehyde (MDA) content, activities of alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were enhanced in the HF and HC groups. The antioxidant and immunity values could be ameliorated by treatment with genistein. Moreover, the transcript levels of antioxidant-related genes (cat, gr, and nrf2) in the liver and anti-inflammatory factors (tgf-ß and il-10) and lyz in the head kidney tissue were promoted, although the expression levels of proinflammatory factors (tnf-α and il-6) declined in the genistein supplementation group, which confirmed the antioxidant and immune-enhancing effects of genistein. Therefore, 500 mg/kg genistein could ameliorate the negative effects of high-energy diets on immunity.

11.
Biomed Res Int ; 2022: 6240711, 2022.
Article in English | MEDLINE | ID: mdl-36147637

ABSTRACT

Staphylococcus aureus is emerging as a ubiquitous multidrug-resistant pathogen circulating among animals, humans, and their environment. The current study focused on molecular epidemiology and evidence-based treatment against S. aureus from bovine endometritis. For this study, n = 304 cattle were screened for endometritis using ultrasonography while presenting case history, and clinical signs were also considered. S. aureus was isolated from endometritis-positive uterine samples which were further put to molecular identification, phylogenetic analysis, susceptibility to antibiotics, and testing of novel drug combinations in both in vitro and field trials. The findings of the study revealed 78.20% of bovine endometritis samples positive for S. aureus, while nuc gene-based genotyping of S. aureus thermal nuclease (SA-1, SA-2, and SA-3) showed close relatedness with S. aureus thermal nuclease of Bos taurus. Drug combinations showed 5.00 to 188.88% rise in zones of inhibitions (ZOI) for drugs used in combination compared to the drugs used alone. Gentamicin in combination with amoxicillin and enrofloxacin with metronidazol showed synergistic interactions in an in vitro trial. Co-amoxiclav with gentamicin, gentamicin with enrofloxacin, and metronidazole with enrofloxacin showed 100%, 80%, and 60% efficacy in treating clinical cases in field trials, respectively. As a result, the study came to the conclusion the higher prevalence of endometritis-based S. aureus, genetic host shifts, narrow options for single drugs, and need for novel drug combinations to treat clinical cases.


Subject(s)
Endometritis , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Amoxicillin/therapeutic use , Amoxicillin-Potassium Clavulanate Combination/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cattle , Endometritis/drug therapy , Enrofloxacin/therapeutic use , Female , Genomics , Gentamicins/therapeutic use , Metronidazole , Microbial Sensitivity Tests , Phylogeny , Staphylococcal Infections/drug therapy , Staphylococcal Infections/genetics , Staphylococcal Infections/veterinary , Staphylococcus aureus
12.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37039117

ABSTRACT

BACKGROUND: Leeches have been used in traditional Chinese medicine since prehistoric times to treat a spectrum of ailments, but very little is known about their physiological, genetic, and evolutionary characteristics. FINDINGS: We sequenced and assembled chromosome-level genomes of 3 leech species (bloodsucking Hirudo nipponia and Hirudinaria manillensis and nonbloodsucking Whitmania pigra). The dynamic population histories and genome-wide expression patterns of the 2 bloodsucking leech species were found to be similar. A combined analysis of the genomic and transcriptional data revealed that the bloodsucking leeches have a presumably enhanced auditory sense for prey location in relatively deep fresh water. The copy number of genes related to anticoagulation, analgesia, and anti-inflammation increased in the bloodsucking leeches, and their gene expressions responded dynamically to the bloodsucking process. Furthermore, the expanded FBN1 gene family may help in rapid body swelling of leeches after bloodsucking, and the expanded GLB3 gene family may be associated with long-term storage of prey blood in a leech's body. CONCLUSIONS: The high-quality reference genomes and comprehensive datasets obtained in this study may facilitate innovations in the artificial culture and strain optimization of leeches.


Subject(s)
Genome , Leeches , Animals , Base Sequence , Leeches/genetics , Biological Evolution
13.
Fish Physiol Biochem ; 47(5): 1611-1622, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34427827

ABSTRACT

Lipid metabolism disorders are found ubiquitously in farmed fish and occur as a result of excessive fat accumulation. Previous studies have found that miR-33 is involved in lipid metabolism; however, its role in fish lipid metabolism is unclear. We sought to clarify this relationship in grass carp in vivo and in vitro. Our findings revealed the length of miR-33 to be 65 bp. Phylogenetic tree analysis showed that grass carp miR-33 was most closely related to fish miR-33 (Siganus canaliculatus). Hepatocytes transfected with miR-33 mimic displayed markedly raised TG content (P < 0.05) as well as increased levels of lipid synthesis-related transcription factors (P < 0.05). Compared with blank and saline groups, total serum cholesterol, AST, and LDL levels were suppressed in groups treated with the miR-33 antagomir (P < 0.05). Moreover, the expression levels of PPARγ and SREBP-1c mRNA were significantly decreased in contrast to those found in the control group (P < 0.05). Similar findings were noted in the expression of immune-related proinflammatory molecules (TNFα, IL-1ß, IL-6, and NF-κB), which also demonstrated decreased levels (P < 0.05). Conversely, high expressions of anti-inflammatory factors (TGF-ß1 and IL-10) were noted (P < 0.05). This investigation strongly supports the role of miR-33 in hepatopancreas-based lipid metabolism and immunity. miR-33 may have been highly conserved in early vertebrates in order to facilitate liver-specific metabolic and immunomodulatory functions. Our findings provide a basis for further investigations exploring the mechanisms surrounding fish lipid metabolism and may aid in preventing and treating immunocompromised fish as well as fish with fatty hepatopancreas, and other metabolic diseases.


Subject(s)
Carps , Fish Diseases , Metabolic Diseases , MicroRNAs , Animal Feed/analysis , Animals , Carps/metabolism , Diet , Dietary Supplements , Fish Proteins/genetics , Immunity, Innate , Lipid Metabolism , Lipids , MicroRNAs/genetics , Phylogeny , Signal Transduction
14.
J Fish Biol ; 99(6): 1843-1856, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34418098

ABSTRACT

Glucose transporter 4 (GLUT4) is comprehensively investigated in mammals, while the comparative research of GLUT4 in common carp is deficient. To investigate the function of GLUT4, carp glut4 was first isolated. The open reading frame of carp glut4 was 1518 bp in length, encoding 505 amino acids. A high-sequence homology was identified in carp and teleost, and the phylogenetic tree displayed that the carp GLUT4 was clustered with the teleost. A high level of glut4 mRNA was analysed in fat, red muscle and white muscle. After fasting treatment, glut4 mRNA expression was increased significantly in muscle. In the oral glucose tolerance test experiment, glut4 mRNA was also significantly elevated in muscle, gut and fat. Furthermore, intraperitoneal injection of insulin resulted in the upregulation of glut4 gene expression significantly in white muscle, gut and fat. On the contrary, the glut4 mRNA level in the white muscle, gut and fat was markedly downregulated after glucagon injection. These results suggest that GLUT4 might play important roles in food intake and could be regulated by nutrient condition, insulin and glucagon in common carp. Our study is the first to report on GLUT4 in common carp. These data provide a basis for further study on fish GLUT4.


Subject(s)
Carps , Fish Proteins/genetics , Glucose Transporter Type 4/genetics , Animals , Carps/genetics , Carps/metabolism , Glucagon/metabolism , Glucose/metabolism , Insulin/metabolism , Phylogeny , Starvation
15.
Gen Comp Endocrinol ; 301: 113647, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33166532

ABSTRACT

Irisin, encoded by fibronectin type III domain-containing protein 5 (FNDC5) gene, plays a role in energy expenditure and insulin sensitivity in mice. In fish, the function of irisin related to glucose metabolism is less reported. It may increase glucose utilization in fish. The aim of the present study was to characterize the regulatory role of irisin in glucose metabolism in common carp (Cyprinus carpio L.). In this study, FNDC5a and FNDC5b were isolated from common carp. The cDNA of FNDC5a and FNDC5b were 722 bp and 714 bp, encoding 221 and 207 amino acids, respectively. FNDC5a was abundantly expressed in the brain and gonad. FNDC5b was mainly expressed in brain. Different expression pattern of FNDC5a and FNDC5b under fasting/refeeding and OGTT experiment were identified. The recombinant common carp irisinA and irisinB were prepared by prokaryotic expression system. Glucose concentration was decreased in treatment with irisinA or irisinB in the in vitro and in vivo experiments. The mRNA expression levels of gluconeogenesis-related genes were significantly down-regulated, while the mRNA expression of glycolysis-related genes were significantly up-regulated after treatment with recombinant irisinA or irisinB in liver in vivo and in primary hepatocytes in vitro. Our research shows that irisin inhibits hepatic gluconeogenesis and promotes hepatic glycolysis. Taken together, this study for the first time revealed the two subtypes of FNDC5 and explored the function and mechanisms of irisinA and irisinB in fish glucose homeostasis.


Subject(s)
Carps , Insulin Resistance , Animals , Carps/genetics , Fibronectins/genetics , Glucose , Liver
16.
Animals (Basel) ; 10(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233604

ABSTRACT

Apelin, a kind of active polypeptide, has many biological functions, such as promoting food intake, enhancing immunity, and regulating energy balance. In mammals, studies have indicated that apelin is involved in regulating food intake. However, there are relatively few studies about the regulatory effect of apelin on fish feeding, and the specific mechanism is not clear. Therefore, the purpose of this study was to preliminarily investigate the regulatory effects of apelin on key genes of feeding and growth in common carp (Cyprinus Carpio L.) through in vitro and in vivo experiments. In the present study, after incubation with different concentrations of Pyr-apelin-13 (0, 10, 100, and 1000 nM) in hypothalamic fragments, the expressions of Neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA were significantly up-regulated at 12 and 3 h, respectively, and the significant down-regulation of Cocaine and amphetamine-related transcript (CART) mRNA expression was observed at 1 and 3 h. In vivo, after Pyr-apelin-13 oral administration (0, 1, 10, and 100 pmol/g), the orexin mRNA level in the hypothalamus of common carp was significantly increased at 1, 6, and 12 h, while CART/(Proopiomelanocortin) POMC mRNA levels in the hypothalamus of common carp were significantly down-regulated. Following incubation with different concentrations of Pyr-apelin-13 (0, 10, 100, and 1000 nM) in primary hepatocytes, GHR (Growth hormone receptor), IGF2 (Insulin-like growth factor 2), IGFBP2 (Insulin like growth factor binding protein 2), and IGFBP3 (Insulin like growth factor binding protein 3) mRNA levels were significantly increased at 3 h. In vivo, the levels of IGF1 (Insulin-like growth factor 1), IGF2, IGFBP2 (Insulin like growth factor binding protein 2), and IGFBP3 mRNA were significantly increased after the oral administration of Pyr-apelin-13 in the hepatopancreas, in a time and dose-dependent manner. These results support the hypothesis that Pyr-apelin-13 might regulate the feeding and growth of common carp through mediating the expressions of appetite- and growth-related genes. Overall, apelin, which is an orexigenic peptide, improves food intake and is involved in the growth of common carp.

17.
Fish Physiol Biochem ; 46(5): 1665-1677, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32447624

ABSTRACT

Hepatic lipid metabolism disorder due to excessive fat accumulation in fish is a significant problem in aquaculture. Studies have shown that grape seed procyanidin extract (GSPE) can regulate fish lipid metabolism and improve fish immunity. However, the mechanism is unclear. In this study, we used grass carp that stores excess fat in the liver as a model. In vitro, GSPE treatment of hepatocytes for 3 h significantly decreased TG content, accompanied with decreased expression of SREBP-1c, FAS, and ACC and increased expression of PPARα, ATGL, and LPL. GSPE treatment for 1 h significantly decreased expression of pro-inflammatory cytokines (TNFα, IL-6, IL-1ß, and NF-κB) and increased the expression of anti-inflammatory cytokines (IL-10 and TGF-ß1). In vivo, the administration of GSPE significantly reduced high-fat diet-induced increase of serum CHOL, TG, and HDL, but increased LDL content. GSPE treatment for 3 h increased expression of ATGL and LPL, and significantly decreased the expression of HFD-fed-induced SREBP-1c, ACC, FAS, PPARγ, PPARα, and H-FABP. GSPE treatment for 3 h also significantly decreased the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1ß) and increased the expression of the anti-inflammatory cytokine IL-10. The expression levels of the lipogenic miRNAs, miR-33, and miR-122, were suppressed both in vivo and in vitro by GSPE. In summary, GSPE had hypolipidemic and potential anti-inflammatory effects in the liver, potentially mediated by miR-33 and miR-122.


Subject(s)
Carps , Grape Seed Extract/chemistry , Inflammation/prevention & control , Lipid Metabolism/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Animals , Hepatocytes/drug effects , Inflammation/chemically induced , Oleic Acid/toxicity , Plant Extracts/chemistry
18.
Front Immunol ; 11: 904, 2020.
Article in English | MEDLINE | ID: mdl-32457762

ABSTRACT

The effects of the oral administration of Rehmannia glutinosa polysaccharide (RGP-1) on the immunoregulatory properties, antioxidant activity, and resistance against Aeromonas hydrophila in Cyprinus carpio L. were investigated. The purified RGP-1 (250, 500, and 1,000 µg/mL) was co-cultured with the head kidney cells of the common carp. The proliferation and phagocytosis activities of the head kidney cells, and the concentration of nitric oxide (NO) and cytokines in the culture medium were determined. Next, 300 common carps (47.66 ± 0.43 g) were randomly divided into five groups; the two control groups (negative and positive) were administered sterile PBS and the three treatment groups were administered different concentrations of RGP-1 (250, 500, and 1,000 µg/mL) for seven days. Subsequently, the positive and treatment groups were infected with A. hydrophila, and the negative group was administered sterile PBS for 24 h. The concentration of NO, cytokines, lysozyme (LZM), and alkaline phosphatase (AKP) in serum, the total antioxidant capacity (T-AOC), the levels of malonaldehyde (MDA) and glutathione (GSH), and the total activities of superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the hepatopancreas of the common carp were tested. We observed that RGP-1 could significantly enhance the proliferation and phagocytosis activities (P < 0.05), besides inducing the production of NO, pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-12) and anti-inflammatory cytokines (IL-10, TGF-ß) (P < 0.05) in vitro. The in vivo experimental results revealed that RGP-1 significantly enhanced NO production, protein levels of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-12), LZM and AKP activities, and the antioxidant content (T-AOC, SOD, CAT, GSH, GSH-Px, and MDA) compared to that observed in the negative group prior to A. hydrophila infection (P < 0.05). NO, pro-inflammatory cytokines, LZM and AKP activities were significantly lower than that in the positive group after infection (P < 0.05). However, whether infected or not, the expression of anti-inflammatory cytokines (IL-10, TGF-ß) increased significantly in the RGP-1-treated groups (P < 0.05). Therefore, the results suggested that RGP-1 could enhance the non-specific immunity, antioxidant activity and anti-A. hydrophila activity of the common carp, and could be used as a safe and effective feed additive in aquaculture.


Subject(s)
Aeromonas hydrophila/drug effects , Anti-Bacterial Agents/administration & dosage , Antioxidants/administration & dosage , Carps , Gram-Negative Bacterial Infections/prevention & control , Head Kidney/drug effects , Immunologic Factors/administration & dosage , Oxidative Stress/drug effects , Polysaccharides/administration & dosage , Rehmannia , Administration, Oral , Aeromonas hydrophila/immunology , Aeromonas hydrophila/pathogenicity , Animals , Anti-Bacterial Agents/isolation & purification , Antioxidants/isolation & purification , Carps/immunology , Carps/metabolism , Carps/microbiology , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/metabolism , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/metabolism , Gram-Negative Bacterial Infections/microbiology , Head Kidney/immunology , Head Kidney/metabolism , Immunologic Factors/isolation & purification , Nitric Oxide/metabolism , Phagocytosis/drug effects , Polysaccharides/isolation & purification , Rehmannia/chemistry
19.
Fish Physiol Biochem ; 46(4): 1469-1482, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32323051

ABSTRACT

The GH (growth hormone)/IGFs (insulin-like growth factors) system has an important function in the regulation of growth. In this system, IGFBPs play a crucial regulatory role in IGF functions. As a member of the IGFBP family, IGFBP2 can bind to IGF and regulate IGF functions to regulate development and growth. In addition, IGFBP2 shows key regulatory functions in cell proliferation and metabolism. In this study, the igfbp2 gene was cloned from grass carp (Ctenopharyngodon idellus) liver. The ORF of grass carp igfbp2 is 834 bp long and encodes 277 amino acids. The tissue distribution results showed that igfbp2 is expressed in multiple tissues in grass carp and has a high expression level in the liver. In the OGTT, igfbp2 expression was significantly decreased in the liver and brain after 6 h of treatment with glucose. In vitro, igfbp2 expression in grass carp's primary hepatocytes was significantly suppressed by insulin after treatment for 6 and 12 h. Moreover, igfbp2 expression was markedly increased in a dose-dependent manner with glucagon incubation in grass carp's primary hepatocytes. To the best of our knowledge, this is the first report about Igfbp2 in grass carp. These results will provide a basis for the in-depth study of grass carp Igfbp2.


Subject(s)
Carps/classification , Glucagon/pharmacology , Glucose/pharmacology , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin/pharmacology , Somatomedins/metabolism , Amino Acid Sequence , Analysis of Variance , Animals , Base Sequence , Carps/genetics , Carps/immunology , Cloning, Molecular , DNA, Complementary/chemistry , Glucagon/administration & dosage , Glucose/administration & dosage , Hepatocytes/drug effects , Insulin/administration & dosage , Insulin-Like Growth Factor Binding Protein 2/chemistry , Insulin-Like Growth Factor Binding Protein 2/physiology , Open Reading Frames , Phylogeny , Probability , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sequence Alignment
20.
Fish Physiol Biochem ; 46(4): 1207-1218, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32212006

ABSTRACT

Glucose transporter 2 (glut2) has been studied in mammals, aves, and several fish, while the comparative studies of glut2 in common carp are still lacking. In this study, glut2 was firstly isolated and characterized from the liver of common carp. The full-length cDNA of glut2 was 2351 bp with an open reading frame (ORF) of 1512 bp, encoding 503 amino acids. Alignment of glut2 amino acid sequences from different species revealed that common carp glut2 showed higher sequence identity with teleosts, and lower homology with mammals and amphibians. Tissue distribution demonstrated that glut2 mRNA level was mainly expressed in liver, foregut, and midgut. To investigate the actions of glut2 on glucose metabolism, the level of glut2 mRNA was detected after intraperitoneal injection of glucose, human insulin and glucagon (100 ng/g), respectively. Following glucose administration, glut2 gene expression was significantly upregulated at 3 h in the foregut. However, no change was found in hepatic glut2 mRNA level, indicating that glut2 may have a role in intestinal glucose uptake rather than in the liver. Following insulin treatment, the expression of glut2 was markedly downregulated at 3 h and 6 h in the liver, and at 3 h in the foregut, respectively. Furthermore, glut2 mRNA expression was unaffected by glucagon injection in the liver and foregut. These results suggested that the expression of glut2 regulated by pancreatic hormones was different. Taken together, our studies firstly revealed the structure of the glut2 gene and its potential functions in glucose metabolism of common carp.


Subject(s)
Carps/metabolism , Glucose Transporter Type 2/genetics , Amino Acid Sequence , Amino Acids/genetics , Analysis of Variance , Animals , Base Sequence , Cloning, Molecular , Down-Regulation , Gene Expression , Glucagon/administration & dosage , Glucagon/pharmacology , Glucose/administration & dosage , Glucose/pharmacology , Glucose Transporter Type 2/drug effects , Glucose Transporter Type 2/isolation & purification , Glucose Transporter Type 2/metabolism , Insulin/administration & dosage , Insulin/pharmacology , Intestinal Mucosa/metabolism , Liver/chemistry , Liver/metabolism , Open Reading Frames/genetics , Phylogeny , Random Allocation , Real-Time Polymerase Chain Reaction , Sequence Alignment , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...